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Abstract Computational models fail to shed light on general metaphysical

questions concerning the nature of emergence. At the same time, they may provide

plausible explanations of particular cases of emergence. This paper outlines the

kinds of modest explanations to which computational models are suited.
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Introduction

Computational modeling plays an increasingly important explanatory role in cases

where we investigate systems or problems that exceed our native epistemic

capacities. One clear case where technological enhancement is indispensable

involves the study of complex systems.1 Even in contexts where the number of

parameters and interactions that define a problem is small, simple systems

sometimes exhibit non-linear features which computational models can illustrate

and track. In recent decades, computational models have been proposed as a way to

assist us in understanding emergent phenomena.

The core concern of this paper centers on the following question: Assuming that

emergent properties are a genuine feature of the natural world, how might

computational models help us to generate explanatory accounts of those properties?
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1 The term ‘technological enhancement’ in this context is due to Humphreys (2004). There, Humphreys

provides a detailed consideration of some of the epistemological implications of increasing reliance on

computational modeling for science. Not all such enhancements simply leverage the computational power

of machines. Some, for instance the automatic telescopes discussed by Humpreys (ibid 6) serve to

overcome non-epistemic limitations such as fatigue or slow reaction times.
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Putatively emergent properties such as the flocking behavior of birds (Reynolds

1987), the adaptive features of the immune systems (Hofmeyr and Forrest 2000) and

the characteristic patterns of traffic flow (Schreckenberg et al. 1995) have been

given computational models. In what sense (if any) do such models help to explain

the respective emergent features under consideration?

The role of models in theories and explanations has been an important topic for

philosophers of science since the early 1970s.2 However, when investigating

emergent properties, the nature of the explananda makes the role of the model

especially problematic. Given the supposed irreducibility of emergent properties, in

order to claim that one has provided computational explanations for emergent

properties one must first distinguish computational models or explanations from

reductions. If computational models have a reductive character, then the very idea of a

computational model of an emergent property would be self contradictory. So, for

instance, Joshua Epstein identifies computational models as reductive and contrasts

what he sees as the desire of classical emergentists to ‘‘preserve a ‘‘mystery gap’’

between micro and macro’’ with agent-based modeling which ‘‘seeks to demystify

this alleged gap by identifying microspecifications that are sufficient to generate—

robustly and replicably—the macro (whole)’’ (1999, p. 55) Against Epstein, this paper

argues that computational studies of emergence adopt a modest approach to the ambit

of their models and that the explanations provided by such models rely on

mechanisms whose generality is limited. As such, these models fail to shed light on

general metaphysical questions concerning the nature of emergence while nonethe-

less providing plausible explanations of particular cases of emergence.

While the basic metaphysical problem of emergence will not be solved by

computational modeling projects, we have ample reason to believe that specific

cases of emergence are amenable to scientific explanation of a more modest sort.

Contrary to the claims of Epstein and others, such modest models of emergence can

be explanatory without necessarily being reductive.

Computational Emergence

In philosophical discussions of emergence, computational models are usually

deployed in support of epistemological characterizations of emergent properties. For

2 An emphasis on the role of models in scientific explanation has been one of the central characteristics

of the semantic tradition in the philosophy of science (Suppes 1962; Van Fraassen 1980). According to

the semantic view of scientific theories (esp. Suppe 1977; Van Fraassen 1980) scientific inquiry and

explanation is largely a matter of the construction of models. The semantic view of theories emphasizes

the abstract structure of theory rather than on the particular syntactic presentation of the theory (Van

Fraassen 1972). While models are central to the semantic view of theories, when we consider specifically

computational models, we encounter a layer of philosophical challenges of which philosophers in the

semantic tradition in the philosophy of science were mostly unaware. In computational modeling, the

question of application and implementation are unavoidable. While it is useful to consider theories as

abstract structures, in the context of computational modeling as Humphreys points out: ‘‘(s)yntax

matters… The importance of syntax to applications, and especially to computational tractability, is

something that the semantic account of theories, for all its virtues, is essentially incapable of capturing.’’

(2002, p. S3)
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instance, Mark Bedau provides an account of what he calls weak emergence in

terms of computational simulation (Bedau 1997). Bedau defines weakly emergent

features of a system as those which can be derived from the microdynamics of the

system only by an exhaustive simulation. Thus, weakly emergent properties are

some subset of the properties of a computational simulation which are distinguished

by reference to an epistemic agent’s inability to predict their appearance without

having first run each step in the simulation.3 Observing runs of the simulation could

later lead an agent to inductively predict the appearance of the emergent property,

but such predictions are warranted by judgments concerning the reliability and

regularity of the behavior of the simulation, they are not based on an understanding

of the object whose behavior is being simulated. In light of the possibility of

successful inductions without detailed understanding, we could say that weakly

emergent properties are characterized such that for all epistemic agents, including

omniscient ones, the shortest non-enthymatic path towards a prediction of the

emergent property has the same computational complexity as the simulation which

produces that property. In any event, any attempt to specify what we mean by weak

emergence will depend on reference to some properties of the simulation under

consideration. Thus, weak emergence is only derivatively a matter of the

relationship between an observer and a model. It is primarily a result of the

computational complexity of the output of a model.

When computer scientists use the term ‘computational emergence’ they usually

mean to mark some feature of a process which the software designer did not

intentionally code into the algorithms which generate the process. As such,

emergent features are sometimes described in loose terms as not having been ‘hard

coded’ into the source code of an executable object. In most practical programming

contexts emergent properties are either of little interest or are a nuisance to be

avoided. However, some computer scientists have proposed actively exploiting

features of emergent computing in the attempt to model emergent features of the

natural world. For example, Stefanie Forrest writes: ‘‘…interesting and useful

computational systems can be constructed by exploiting interactions among

primitive components, and further, that for some kinds of problems (such as

modeling intelligent behavior) it may be the only feasible method.’’ (1990, p. 1)

Thus, emergent computing is both a result of the unanticipated interplay of parts of

an executable object and a way of modeling the appearance of putatively emergent

properties. As such, on Forrest’s account, emergence is both a property of the

computational model itself and a property of the objects being modeled. While the

literature on computational emergence sometimes tends to conflate these two roles

for the notion of emergence, the distinction is indispensable if we hope to

understand the explanatory role of computational models of emergence.

Forrest’s view of computational emergence is intended to be applied to a wide

variety of cases. For the purposes of this paper, it suffices to focus on the simplest

and most familiar context in which emergence is studied computationally, namely

the cellular automata models (CA) that were first described by John von Neumann

3 Peter Cariani (1991) also emphasized the role of observers in a similar, though less formal manner,

when describing what he calls ‘computational emergence’.
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and Stanislaw Ulam. Their development was part of von Neumann’s investigation

of the possibility of self-reproducing machines. Von Neumann developed CA as a

way of characterizing systems wherein the rule-governed interactions of basic

constituents can be observed as they unfold over a series of discrete steps. In order

to isolate the problem of self-reproducing machines from other questions (for

example, questions concerning the representational relationship between the model

and the actual conditions in the physical world) von Neumann stipulated that in a

CA, the objects under consideration be isolated and governed solely by the rules of

the model. Thus, as Hu Richa and Xiaogang Ru note (2003), standard CA can be

characterized in terms of a quintuple set: {Cells, Cell Space, Cell State,

Neighborhoods, Rules}. Where cells are the basic objects or elements of the CA

each having some individual state depending on the rules of the CA. Cell space is

defined as the set of all cells and their values at some time. Neighbors are the set of

cells surrounding some any center cell and rules are the transition functions of cell

states, mapping cell spaces to cell spaces (Hu Richa and Xiaogang Ru 2003,

p. 1047). The rules of the CA are defined as being maximally general with respect to

the cells in the model and the application of rules updates each cell synchronically.4

One especially suggestive and well-known descendent of von Neumann’s

method is John Conway’s Game of Life automaton.5 Conway’s automaton generates

patterns that exhibit some of the behaviors we intuitively associate with living

things. As such, it illustrates von Neumann’s insight that simple rules can generate

complicated outputs. By stipulating well-defined rules and boundaries for the

model, von Neumann’s strategy permitted the exclusion of myriad contextual

influences that play a role in real biological or physical investigation.6

CA like von Neumann and Conway’s exemplify what John Holland would later

call constrained generating procedures (Holland 1997). Holland treats constrained

generating procedures as representations of the interaction of simple mechanisms

wherein possible interactions are represented via some transition function. A

transition function maps a set of possible states of a system onto itself (1997,

pp. 130–131). The interaction of transition functions may give rise to new kinds of

regularity some of which, in turn, can also be given fruitful formal representations

as components of further interactions.7

4 For the sake of simplicity, I will focus on the individuals-based models. However, it should be noted

that many of the most interesting computational models are hybrid, rather than pure CA. So, for example

Christina Warrender’s models of the peripheral immune system (2004) employ both an agent based and a

particle-systems model. Cells involved in the earliest stages of infection are small in number and are not

appropriately modeled by continuous representations. However, the number of molecules involved in an

infection far outstrips the number of cells and so she models the molecular environment of cells as well as

many of the components of each cell state as continuous variables.(2004, 17). While much of my

argument will involve a comparison of CA and differential equation models, the argument for modesty

can also be extended to the hybrid cases.
5 Cellular automata became especially well-known in the early 1970’s with the appearance of two

articles by Martin Gardner in Scientific American devoted to the Game of Life.
6 For von Neumann’s thoughts on recursivity and self-replication see Burks A. W. (Ed.) (1970).
7 Following Holland’s explanation of the role of transition function (only slightly modified) we begin

with some set of states S {s1, s2, s3, …} which is taken to be finite for the sake of computational

tractability. A transition function takes as its argument some state of the system in combination with some
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Chris Langton and others have described parameters on the space of possible CA

rules via formal characterization of the transition functions for CA-like systems

(1990). Parameterization of the space of possible rules for CA reveals a variety of

important mathematical properties. Perhaps the most interesting property of the CA

is that the set of logically possible mechanisms that can be given a CA

representation is wider than those that can be modeled via differential equations

(Hu Richa and Xiaogang Ru 2003, p. 1049). With this in mind, CA (suitably

characterized) may be preferable to differential equations, for certain purposes,

because they can capture a very wide set of values, including all the discrete cases

that ordinary differential equations miss.

While such formal systems merit attention in their own right, we may still ask

whether, they shed light on cases of emergence in the world beyond the model. In

the case of Holland’s approach, emergence via constrained generating procedures is

such that given a system governed by more than one kind of rule ranging over the

behavior of a simple set of elements we can sometimes find a set of initial

conditions such that some macroproperty of interest is generated by the system in

question. What is the relationship between the formal properties of the model itself

and the explanandum that serves as its putative subject matter? Surely, for instance,

Conway’s Game of Life has relatively little explanatory content when it comes to

understanding the emergence of real biological systems. Von Neumann was

sensitive to the peculiar status of computational models. He wrote for instance:

‘‘The formalistic study of automata is a subject lying in the intermediate area

between logics, communication theory, and physiology. It implies abstractions that

make it an imperfect entity when viewed exclusively from the point of view of any

one of the three above disciplines.’’ (1966, p. 91) One might ask whether the

abstraction that concerned von Neumann is any more severe in the case of automata

than it is in the case of other scientific models. The next section unpacks some of the

distinctive properties of the abstraction or independence of CA and related

computational models.

Computational Models as Scientific Models

Unlike a controlled experiment in biology or chemistry, a computational model

concerns only an abstract representation of the form of the system under

consideration. In explanations which depend on a computational model, the gap

between the explanandum and the explanation differs in important ways from

ordinary scientific contexts. As von Neumann recognized, the abstract nature of

Footnote 7 continued

input at a time and gives as a value a state of the system. For any input of type j there will be an associated

set of possible input values Ij. Thus, Ij = {ij1, ij 2, ij 3, …}, where ij2 names state number 2 of the input

j. Given k types of input for the system there will be k sets of possible input values {I1, I2, I3, …Ik}. The

set of all combinations for the system is given as the product of the sets I1 9 I2 9 I3 … 9 Ik. Now, the

transition function can be defined as f: (I1 9 I2 9 I3 … 9 Ik) 9 S ? S and the temporal dynamic of

the system can be defined as S(t?1) = f(I1(t), I2(t), I3(t), …Ik(t), S(t)). The iteration of f generates the

state trajectory of the system.
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computational models of emergence makes the question of their application more

problematic than might be the case for other scientific models. Computational

models of emergence, like those proposed by Holland, are formal systems of

elements, classes and functions or operations such that within the parameters of the

system, emergent features follow from the definition of the model. While

constrained generating procedures are purely formal and can be studied as abstract

mathematical objects, once we treat these computational processes as models,

implementing them on a computer and observing their consequences via some

graphical representation or animation, we have taken an additional conceptual step.

Treating the CA as a model of some part of the natural world takes us beyond the

formal characteristics of the coded object itself and raises some challenging

philosophical problems for the modeler. Qua model, the CA have the paradoxical

characteristic of being both applied to some domain while at the same time being

tightly insulated systems that are defined by their own maximally general internal

rules.

Like most scientific models CA are generally conceived such that interactions

with the world beyond their boundaries are excluded or tightly controlled. CA are

exaggerated versions of this traditional scientific modeling strategy insofar as cells

are characterized in the most minimal form possible, such that their only relevant

features are those that are subject to the rules governing the model. Günter Küppers

and Johannes Lenhard (2005) note that even though a computational model may be

based on theoretical models, e.g. a system of non-linear partial differential

equations, ‘‘they require further steps of formal treatment because they have to

be implemented into a computer. In this sense simulation models are partly

independent from the underlying theoretical model.’’(2005, p. 7) This independence

partly results from the need to provide a computational implementation, but it also

results from the process of abstraction and insulation that is involved in crafting a

computational model. For example, the objects in a CA are (or are composed of)

cells whose behavior is determined solely by the rules of the model. In traditional

scientific modeling, it would be a mistake to claim that the identity and of the

objects under consideration is completely exhausted by the rules or laws governing

the model. For instance, in a gravitational model, while the equations might apply to

point masses in a system, the objects whose behavior is of interest are extended

physical objects rather than the point masses that figure in our equations. Insofar as

they are intended as models of some real physical situation, the nature of the objects

treated by a gravitational model is not exhausted by the laws governing a model in

which equations govern point masses. The intended application of a gravitational

model is a system of extended bodies rather than a set of point masses. It would be

perverse, for instance to claim that gravitational models should be evaluated by

reference to their success in applying to systems of point masses. It is trivially true

that the intended application of the model determines our interpretation of the

objects which feature in the model itself. That the properties and behavior of the

explananda are only partly captured by the simulation is what permits the possibility

of improving the model.

Strikingly, when we lose our grip on the difference between the objects as they

are figure in nature and the objects as they figure in the model, the model risks
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losing any explanatory import. If we were to restrict our understanding of the model

such that we regarded it as simply a system which outputs generalizations solely on

the basis of the way the model was stipulated or defined, then it is in danger of

becoming trivialized.

One of the reasons for the semantic turn in philosophy of science was that

axiomatic models of science were subject precisely to this kind of trivialization.

Recall that one of the advantages of models-based or semantic approaches over the

axiomatic approaches to science is that the axiomatic approach risks prematurely

fixing some point in the history of a theory rather than acknowledging the

development of improved theories. This was especially true in the biological

sciences. As Alex Rosenberg notes ‘‘When we try to frame the theory of natural

selection into an axiomatic system, the result (fails to) reflect the full richness of

Darwin’s theory… In particular, the theory’s assertion that the fittest among

competing organisms is one easy to deprive of explanatory force if we define ‘‘the

fittest’’ as those which survive and reproduce.’’ (Rosenberg 2000, p. 100)

Philosophers of biology were drawn to the models-based approach to science

insofar as it seems adequate to the idea that well-established theories offer models

which are subject to refinement and local modification.

Computational models risk losing this advantage insofar as they are subject to an

unusually severe kind of ‘‘screening off’’ of interfering conditions at a variety of

levels. This partly explains what some authors have described as the independence

or autonomy of computational simulations in scientific inquiry (Humphreys 1991;

Galison 1996). For computational models, this independence becomes a challenge

when we consider the interpretation of the objects in the model. Unlike, for instance

a gravitational model which idealizes extended masses as point masses for the

purposes of the providing manageable equations, the characteristics of the objects in

the CA are less obviously separable from the rules governing the CA. There is no

sense in which we can better approximate the characteristics of some particular

object via the behavior of a cell in a CA, insofar as the cell and the rules of a CA are

interdefined.

By way of contrast, consider how scientists describe what it means to model with

differential equations. In a traditional model employing differential equations, it

makes sense to think of a modeling cycle consisting of roughly four steps (Fulford

et al. 1997, p. 2). First, the system under consideration is observed and the relevant

quantities and relations are determined. This involves simplification and abstraction,

but it is still closely tied to the act of measuring some feature of the system in

question. Second, we represent the relations between measured quantities as

equations. We solve the equations and interpret the solutions as answers to questions

concerning the original system. Then finally, we determine whether our predictions

about the system in question (our interpretation of the solutions for our equations)

make sense in light of our experimental investigation of the system. As Fulford et al.

note, there is a cyclical process to modeling of this kind insofar as failures at various

stages of the modeling process can lead us to refine previous stages. Of course, if the

four-stage process is successful, then the model can be used to make further

predictions of the system in question. While this description of what is involved in
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modeling with differential equations is highly simplified, the contrast with what we

see in CA models is clear.

The most obvious difference between modeling with CA and differential

equations is the lack of any quantitative results in the CA cases. This means that CA

simulations provide qualitative analogies to the natural systems in question rather

than measurable quantities. These analogies can be extremely useful and may give

us some insight into methods for controlling the phenomenon in question. However,

in practice and in application, generalizations that we derive from these models will

rest entirely on the analogy between the system under consideration and the

simulation. This is one of the reasons that the success of a computational model is

generally judged not by its predictive power, but by the degree to which it imitates

the known behavior of a target system. So, for instance as Küppers and Lenhard

note, Norman Phillips’ classic climate model was judged by the extent to which it

was able to reproduce observed global flow patterns in the atmosphere rather than

with respect to the adequacy of the six partial differential equations that formed the

initial inspiration for his computational model. In particular ‘‘one criterion was the

complex pattern of the so-called surface westerlies, winds blowing continuously

north(wards from) the equator…The decisive criterion for success was the adequate

imitation of the phenomena, i.e. the flow patterns, not the derivation from

theoretical principles.’’ (2005, p. 4)

This analogical feature of CA modeling distinguishes it in another important way

from traditional models that employ the kind of cyclical approximation methods

described above. For instance, if we are interested in grasping the basic laws of

nature via our models, then we hope that the objects as depicted by our model will

share properties in common with the objects as they exist in nature. The more

successfully the equations allow us to predict and control the behavior and

properties of the objects of interest, the closer we are to grasping the laws governing

that object. The ‘objects’ which feature in the CA are defined in terms of the rules of

the model and there is no sense of a direct comparison between the object, taken as

part of the model and the object in the world.

Even in cases where our differential equation model ranges over objects which

are quite different from the objects in nature which we are trying to understand,

(think, for example, of using a gravitational model which ranges over point masses

to understand the behavior of planets) the critical difference with computational

models is the role of the model objects in the differential equation model as stand-

ins for the object in nature. Thus, while a gravitational model might employ point

masses, they can be understood to stand as proxies for planets. By contrast, in CA,

insofar as we can still talk about objects in a model standing for objects in nature,

this relationship is mediated by the analogy between the model as a whole and the

relevant portion of nature under consideration.

In models using differential equations we can diminish the space between the

object in the model and the explanandum by adjusting the equations governing that

object as a result of our measurements or as a result of revising our view of the

relationship between quantities. In the case of CA it becomes more difficult to

understand how we could provide incrementally more accurate descriptions of the

target objects. In CA (whether we see cells or patterns of cells as the objects
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featuring in the model) we lack a comparable sense in which we can consider

improving the correspondence between the objects in the model and the objects in

nature. If we identify the CA with its quintuple and in particular its rules, then we

will simply be unable to modify the CA to get a more accurate representation of

some phenomenon. While that identification is common for classifying CA, it is

obviously necessary to go beyond that characterization when they are used as

scientific models. For example, it is surely appropriate to allow modifications in the

rules for the CA to improve fit just as it is acceptable to change parameter values in

differential equation models.

However, the difference between the two approaches has less to do with the

possibility of tweaking the model as a whole (clearly this is possible in both cases)

but rather with the distinct role of objects in the models. This difference becomes

clear when we consider the role of initial conditions in the two types of model.

Generally, when we consider the definition of a CA, we treat it as independent of the

choice of possible initial conditions. However, in many cases, the choice of initial

conditions will determine whether or not some putative object will figure in the

model (in Life, for instance, only some initial configurations will produce gliders).

Given that the ‘‘objects’’ of interest depend on the choice of initial conditions, and

given that CA are defined independently of that choice, we can conclude that CA are

not models of those objects per se. Put bluntly, even though, point masses are very

different from planets, the motion of the planets is the target of an explanation

involving such models. Such models begin from the assumption that there are

objects with distinctive properties. The goal of standard scientific models is to get a

better representation of the properties or behavior of those objects. In order for CA

models to play a similar role, we would have to include the relevant initial

conditions in the definition of the CA. Restricting the CA to some subset of initial

conditions in order to make the CA accommodate some target object would involve

a very different kind of modeling project than traditional definitions of CA have

envisioned.8

Kuhn et al. (2003) distinguish between verification and validation of a

computational model where ‘‘‘‘verification is ‘‘building the system right,’’ while

validation is ‘‘building the right system.’’ If we have a set of requirements, we can

verify, formally or informally, that the system implements the requirements. But

validation is necessarily an informal process. Only human judgment can determine

if the system that was specified and built is the right one for the job.’’ (2003, p. 1)

The task of validating the computational model is absolutely dependent on human

judgment insofar as we must judge that the analogy holds between the patterns in

the model and the patterns in the object.9 In the terms employed by Kuhn et al. if we

have not built the right system for the job, then we simply do not have a model. By

contrast, in other areas of science we have an extremely high tolerance for a lack of

fit between the model and the entities being modeled. A Newtonian model of the

solar system, for instance, is literally false, insofar as it excludes many small factors,

8 I am very grateful to Paul Humphreys for his suggestions here.
9 For some discussion of the technical aspects involved in verification, validation and certification of

computational models see Balci 2003.
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(friction, comets, electrical fields) oversimplifies the objects under consideration

(treating planets as point masses) and contradicts our understanding of relativistic

effects. What permits us to make fruitful use of Newton’s model in technological

other practical aspects of life is that we do not rely on the truthfulness set of all

statements that we could, in principle, derive from the model. Instead, we exploit

the approximate correspondence between the objects as mentioned in the model and

the real entities under consideration.

Metaphysics and Explanation

In the case of the study of emergence, the purpose is not to approximate or predict

the behavior of some object, rather the goal is to understand the conditions which

might give rise to some new object or property. For scientists interested in

emergence, as we have seen, CA permit a simulation of how the interplay of distinct

constraints (at various levels) or rules can govern the behavior of the components of

the model so as to give rise to properties which can themselves be subject to

transformations of various kinds. The study of how constraints interact makes

involves a somewhat different approach to the way models function. Here, it is less

clear what values we are measuring insofar as we are not directly concerned with

the properties of target objects for instance. In the case of emergence, the

explanandum is the very appearance of an entity or property rather than its behavior.

Often, the kind of complex systems of interest to scientists studying emergent

properties would be intractably difficult to understand without the capacity to

exclude interfering conditions. The practice of screening off interfering conditions

leads to generalizations that hold within the context of the model or at best ceteris
paribus (all else being equal). Ceteris paribus clauses, or provisos are a feature of

many areas of scientific investigation. However the kind of screening off that we see

in CA models is of a more extreme kind than we find in, for example a traditional

model based on differential equations insofar as the objects of the CA cannot be

meaningfully considered apart from the rules governing the model. In traditional

scientific models, there is the assumption that the objects under consideration have

some standing independently of the model and that the goal of modeling is to get a

more accurate account of their properties. Some philosophers of science, most

notably Nancy Cartwright have argued that all scientific inquiry and explanation

takes the form of the construction of models in which the objects under

consideration are in large part constituted by their role in these models. She

contends that the generalizations that we derive from scientific models (including

models of fundamental physical phenomena) have limited generality. Such

generalizations provide local truths concerning very restricted domains. Without

agreeing to her more general claim concerning the generality of physics, it seems

quite clear that CA models fit her characterization precisely.

Computational models of the kind discussed here have some distinctive features.

They work by analogy with (or by imitating) the portion of the natural world in

question, they have limited generality, they are holistic and as I will argue below,
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they are ontologically agnostic. These features have significant implications for the

attempt to provide computational accounts of emergence.

This is not the place to defend the scientific status of ceteris paribus
generalizations. However, given that computational models of emergence have

the kind of modest character described above, then the explanations that they

support will have a limited ambit. In order to determine what the limits of this kind

of explanation might be, this section argues that the kinds of mechanical

explanations offered in for instance, complexity theory, are not equivalent to

ontological reduction in any sense which would contradict the metaphysical position

of an emergentist. This section briefly describes the metaphysical problem of

emergence, in order to show that the kind of computational models under

consideration here have relatively little relevance.

The metaphysical problem of emergence is easy to appreciate. Common sense

tells us that putatively emergent features of the natural world—things like

organisms, minds, economies and nation states—are real. Thus, we are inclined to

think that a world without such things would have a smaller inventory of real objects

than the actual world. Likewise, for example, it is intuitively evident that the

appearance of conscious mental life at some point during the course of natural

history meant the arrival of something genuinely new. Metaphysical reflection

quickly departs from common sense, noting that ontological novelty seems to entail

an unacceptably paradoxical form of downward causation and arguing that there are

not likely to be as many kinds of object as common sense leads us to believe. Since

the microstructural components are thought to be able to do the job of the macro-

objects, ontological parsimony encourages us to avoid counting macro-objects in

our inventory.

Most emergentists are physicalists and so, like the common sense ontologist, they

must answer the challenge of epiphenomenalism for emergent properties. Stated

more precisely, the challenge is to understand how an emergent property of a system

can act on its constituents? Surely this requires that by acting on its constituents, the

emergent property changes the very things that make it what it is? If so, then

wouldn’t the identity of the organism be changing in such a way as to make it

impossible to say that it is acting on itself? Taken in its strictest sense, it looks like

the idea of systems acting on their own constituents reduces to absurdity. While

constitution and identity are distinguishable notions, the implicit contradiction in

cases of emergent properties acting on their constituents leads many philosophers to

conclude that the putative causal powers of emergent properties are always causally

preempted by the properties of their underlying constituents.

If we accept the causal inheritance principle,10 any powers, over and above the

powers of constituents are not logically possible. Thus, on the standard view, a non-

trivial model of downward causation (and, by extension, of emergence) can make

sense only given a weakened conceptual interpretation of emergent properties,

wherein, as Jaegwon Kim writes: ‘‘we interpret the hierarchical levels as levels of

10 If a functional property E is instantiated on a given occasion in virtue of one of its realizers, Q, being

instantiated, then the causal powers of this instance of E are identical with the causal powers of this

instance of Q.
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concepts and descriptions, or levels within our representational apparatus, rather

than levels of properties and phenomena in the world.’’ (Kim 1999, p. 33). Kim, like

Trenton Merricks (2001) and others, places a significant burden on the conceptual

operation of the mind while relegating the rest of the natural world to the status of a

single basic stuff. This stuff manifests itself through its homogenous causal power,

but insofar as we judge it to be individuated, it is our judgments that do the

individuating. For Kim and Merricks then, the world is split in two with minds on

one side and stuff on the other. While we may identify new patterns and phenomena

for instrumental or other subjective reasons, these can only be shown to be non-

arbitrary and have some basis in non-mental reality given that they make a

difference in nature. However, on the Kim/Merricks view, any candidate powers

that we might identify with emergent properties are preempted by the powers of

nature’s single basic stuff.11

Those of us with metaphysical inclinations might wonder whether Holland-style

models prove the in-principle reducibility of emergent properties to a more basic set

of physical laws. So, for instance, one general line of objection to the claim that

there are computational models of emergence is to argue that the very existence of a

computational model of some phenomenon is tantamount to its reduction. Since

emergent properties are supposedly irreducible, a computational model of

emergence might seem like a self-contradictory notion and instead, computational

models of a putatively emergent phenomenon in the natural world might be taken as

proof that the phenomenon is reducible rather than emergent. The oxymoron

argument rests on a mistaken interpretation of the explanations that these models

provide.

As mentioned in Part One Joshua Epstein argues that what he calls the generative

sufficiency of agent-based computational models is equivalent to explanatory

sufficiency which, in turn is equivalent to reductionism. ‘‘it is precisely the

generative sufficiency of the parts (the microspecification) that constitutes the

whole’s explanation! In this particular sense, agent-based modeling is reductionist.’’

(1996, p. 55) By identifying reductionism, generative sufficiency and explanatory

sufficiency Epstein has left no room for a non-reductive explanation. The sense in

which explanations can be non-reductive is relatively obvious. As Putnam famously

noted (1975, p. 295), there are often good reasons for finding non-reductive

explanations preferable to reductive accounts. To use Putnam’s example; explaining

why a round peg of 1 inch diameter fails to fit through a square hole with a 1 inch

diagonal is clearly not a task for quantum physics.12 It is a mistake to identify

11 Symons 2001 proposes a response to this argument against emergent properties.
12 Rueger points out that there is an objective reason, namely ‘‘The peculiar ‘singular limit’ relation

between the micro and macro descriptions of the hole-and-peg system’’ that ‘‘the macro description seems

to tell us ‘something different’ than the micro description, and why the former is not reducible to the latter

in a way that would support a reductive explanation. In such singular limit cases, regular perturbation

theoretic approaches to solving the problem break down, and the solutions provided by singular

perturbation schemes automatically introduce different levels or scales into the problem, making it clear,

for instance, how the macroscopic explanation considered by Putnam manages to bring out ‘‘certain

relevant structural features of the situation’’ which are invisible in the micro description. Explanations

based on such singular limit relations thus defy the very aim of reductive explanations, viz., to give an

account at a single ‘basic’ level (2001, p. 504).
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explanation per se with reductionism. In a footnote, Epstein acknowledges that his

view of reductionism is one among many: ‘‘The term ‘‘reductionist’’ admits a

number of definitions. We are not speaking here of the reduction of theories, as in

the reduction of thermodynamics to statistical mechanics.’’ (1996, p. 56) By calling

agent-based computer modeling reductionist, Epstein’s intention is to avoid what he

sees as the classical emergentist’s commitment to mysterious gaps between macro

and micro states of a system and to remain faithful to broadly physicalist ontological

principles.

The important difference between traditional reductionist projects in the

philosophy of science and the kinds of explanations of emergent phenomena that

result from computational modeling in scientific is that the rules governing these

models are constitutive of the model and its denizens independently of the

connection between the model and the lower-level or more general theoretical

framework. This is another example of the kind of independence of computational

models. For instance, the conditions that define computational models of emergent

phenomena are not equivalent to the kind of reductionist bridging laws that it was

hoped could connect target phenomena or target generalizations to some lower-level

ontological or theoretical framework. The difference lies in the relationship between

the conditions defining the model and the lower-level theory. Specifically, the

computational modeler’s approach is agnostic with respect to the relationship

between the configuration of simple rules/initial conditions that constitutes the

simulation in question and the lower-level theory. Some lower-level theory that the

reductionist would take as the base-level theory for a metaphysically satisfying

reduction is not within the purview of the computational model.

Computational models are likely to satisfy our ordinary demands for explanation

insofar as they provide a simulation or an analogy which permits the possibility of

some measure of control over the system in question. This limited kind of

explanation would leave deeper metaphysical questions about the individuation,

reality and even the physical reducibility of emergent properties untouched.

Mechanism

It is possible to distinguish reductionism in its ontological and theoretical forms

from a commitment to mechanistic explanation. Mechanistic explanations are

central to scientific practice in the investigation of the source of some phenomenon

or in the study of processes or sequences of events which have some salience. The

notion of mechanism at play is far broader than the familiar push–pull model of

mechanical interaction. A non-reductive account of mechanism has been articulated

by Peter Machamer et al. (2000). Their presentation of mechanism focuses on what

they see as the explanatory practices of biologists, however, it applies equally well

to the more abstract computational models under consideration here. They argue for

a view in which mechanism is understood in terms of the organization of entities

and activities in ways that are ‘‘productive of regular changes from start or set-up

to finish or termination conditions.’’ (2000, p. 3) As such, they emphasize

the discovery and characterization of activities in systems under investigation.
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The mechanistic approach favored by these philosophers is closely related to the

kinds of explanations afforded by computational models described above insofar as

the mechanism under investigation has a formal character which can be discovered

and described independently of a detailed understanding of the components. So, for

instance, mechanism is conceived as a regular transformation from one set of states

to another. Such an approach is fully compatible with the account of transition

functions that Holland and others provide.

…what makes it regular is the productive continuity between stages. Complete

descriptions of mechanisms exhibit productive continuity without gaps from

the set up to termination conditions. Productive continuities are what make the

connections between stages intelligible. If a mechanism is represented

schematically be A ? B ? C, then the continuity lies in the arrows and

their explication is in terms of the activities that the arrows represent.’’ (2000,

p. 3)

CA can be understood as providing an approach to mechanism which focuses on

characterizing the arrows of productive continuity in an abstract form. While

advocates of the mechanistic approach to scientific explanation are eager to

emphasize that their view is grounded in real case studies in the biological sciences,

they provide an account which is quite consonant with more abstract reflection on

the ‘‘arrows’’ of the kind that CA permit.

Clearly, mechanistic models of explanation are distinguishable from ontological

reductionism insofar as the latter is an attempt to provide a maximally general

inventory for the natural world, while the former is a far more modest response to a

particular epistemic or technological need. Mechanisms can be discovered and

usefully employed in science and technology without having any firm grasp on the

foundational or ontological landscape.

It is important to recognize the contrast between computational models that serve

modest explanatory goals and the view that scientific explanation aspires to

maximal generality. The model for the maximalist approach to scientific explana-

tion would be one which takes the basic laws and ontology of physics as providing a

descriptively adequate picture of the natural world. A model of explanation along

these lines is generally assumed in the metaphysical debate over the preemption of

emergent properties by basic physical properties.

By contrast, Holland-style models provide explanations of putatively emergent

phenomena by bracketing possible interfering conditions without being committed

to any specific metaphysical framework. No solution of the metaphysical problem of

emergence is assumed by computational modelers. Because the project of providing

mechanistic explanations is largely agnostic with respect to basic metaphysical

questions, it can provide illuminating mechanistic explanations of particular

emergent phenomena.

In very practical terms, the scientific study of emergence often demands that we

abandon hope of providing the kind of maximal accounts that are assumed in

metaphysical debates over preemption. If we examine the kinds of accounts that we

can expect from complexity theorists, we find that they rule out maximal accounts

almost as a working hypothesis. Complexity theorists generally emphasize the goal
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of modeling the results of interactions in systems with a large number of parts.

‘Largeness’ (unlike, for example, ‘‘larger than’’) is not a well-defined property, and

by using it, what complexity theorists seem to intend are systems whose number of

parts is large enough that the interaction of parts leads the system to exhibit

interesting macro-properties but not so large that it would be more adequately

analyzed using the tools of thermodynamics (E.g. Bar Yam 1997, p. 10). Thus, the

very nature of the medium-scale areas of investigation that fit the interests of

complexity theorists, requires restrictions on the generality of the types of

explanation that can be provided.

This should not surprise or worry us unduly. In practice, providing an explanation

of the appearance of some emergent macroproperty is usually a local project which

depends, in large part, on the epistemic needs of the interested parties. Broader

questions concerning the reality or the metaphysical status of putatively emergent

explanandum are beyond the purview of the kinds of explanations that satisfy such

local epistemic demands.

Most complexity theorists begin with instances of medium scale complexity;

weather, traffic epidemics etc. By contrast, a maximal interpretation would not

include the kind of screening off or ceteris paribus conditions which would permit a

focus on medium scale problems. Instead, the research strategy of the maximalist

would involve the search for CA rules that generate an output which includes a

representation which is analogous to the entire universe. In practice, rather than

providing explanations of obscure cases of medium scale complexity, the

maximalist goal might involve cataloguing the range of simple mechanisms and

observing their impressive behaviors.13 Put in simple terms, in the maximal case, a

scientist would abandon the idea of science as the discovery of generalizations.

Since generality is one of the most important differences between explanation and

mere description, this should strike us as an extravagant sacrifice. In the search for a

maximal model we would be involved in a cataloguing expedition, recording and

organizing the outputs of simple programs in the search for patterns that resemble

the natural world—a project akin to a botany of simple machines. The explanatory

value of such a cataloguing expedition is minimal and has arguably already been

completed. To get a sense for the problem with cataloguing expeditions, imagine

some recursive function with a random output. One can be absolutely certain that

there are all kinds of interesting patterns in the output of such a function, the

question is, how to find them and how to determine their relevance. Such a function

would be completely useless with respect to understanding or explanation and

would constitute a failure in the epistemic project of scientific inquiry. In the context

of computational models of emergence, especially in complexity theory, the trouble

with maximal models is that they fail to provide explanations of the phenomena in

question, in large part because it does not permit the kind of screening off that is

necessary to detect and model these phenomena.
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