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Abstract

Invariance is one of the most important notions in applications of
mathematics. It is one of the key concepts in modern physics, is a com-
putational tool that helps in solving complex equations, etc. In view
of its importance, it is desirable to come up with a definition of invari-
ance which is as general as possible. In this paper, we describe how to
formulate a general physically meaningful (e.g., unit-invariant) notion of
physical invariance in categorial terms.

Invariance is important. Invariance is one of the most important concepts
in applications of mathematics. In addition to its role as a computational tool
in the solution of complex equations (see, e.g., [3, 6]), invariance (symmetry)
is perhaps the most important notion in the conceptual foundations of mod-
ern physics; see, e.g., [5, 12]. Invariance has a central role in contemporary
metaphysics insofar as it relates to the problem of individuation. For example,
Robert Nozick describes objectivity in terms of invariance under transformation
and describes necessary truths as those which are invariant in all possible worlds
[9]. While this paper treats invariance only in physical contexts, our analysis is
conducted with an eye to basic metaphysical questions of the type that Nozick
informally addressed.

It is important to provide a general definition of invariance. Since
the notion of invariance plays such a central role in foundational research, it
is desirable to provide a formal definition of invariance which is as general as
possible.

In mathematics, such general definitions are usually provided by category
theory; see, e.g., [1, 8]. In this paper, we will therefore attempt to describe how
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to formulate a general notion of invariance in categorial terms.
Before outlining the problem, let us first briefly review the main notions of

category theory.

What are categories: motivation. In mathematical theories, we usually
have a class of objects and corresponding mappings. For example, objects of
set theory are sets, and mapping are functions (mappings) between these sets.
In topology, objects are topological spaces, and natural mapping are continuous
functions. In order theory, mappings are ordered sets, and natural mappings
are monotonic functions. In linear algebra, linear spaces are objects, and linear
functions are natural mappings, etc.

In all these cases, the identity mapping f(x) = x (that maps each element
x into itself) is a natural mapping. Also, a composition f(g(x)) of two natural
mappings is also natural: e.g., a composition of two continuous functions is
continuous, a composition of two monotonic functions is monotonic, etc.

Categories: a formal definition. In precise terms, a category consists of
objects A, B, C, . . . , and morphisms (also called arrows) f , g, h, . . .

For every arrow f , there are given objects A (called domain of f) and B
(called codomain of f). This is usually denoted by f : A → B.

For every two arrows f : A → B and g : B → C, there is an arrow g ◦ f :
A → C called a composition of f and g. Composition is associative in the sense
that h ◦ (g ◦ f) = (h ◦ g) ◦ f for all f : A → B, g : B → C, and h : C → D.

For every object A, there is a special identity morphism 1A : A → A for
which f ◦ 1A = f = 1B ◦ f for all f : A → B.

Comment. While category theory is generally introduced by reference to sets
and functions, it is important to recognize that categories have more general
bearing and that there are useful categories in which morphisms are not func-
tions; see, e.g., [1, 8]. In this sense, category theory addresses the most general
features of morphisms.

From the intuitive notion of invariance towards a formal category
definition: analysis of the problem. Informally, invariance means that af-
ter we perform some transformation, the result of a certain operation remains
unchanged. For example, invariance of energy means that after we apply the
corresponding transformation (e.g., rotate and/or shift a configuration of elec-
tric charges) the energy remains the same. In physics, transformations which
preserve certain quantities are often called symmetries. It is known that sym-
metries form a group in the sense that a composition of two symmetries is a
symmetry, and an inverse transformation to a symmetry is also a symmetry.
Such a group is usually called a symmetry group. There is also a known deeper
relation between invariants and symmetry groups – provided by Noether’s the-
orem; see, e.g., [5]. Let us describe the situation of invariance in terms of sets,
in such a way that we will be able to reformulate this description categorially.
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In set theoretic terms, we have a set S of possible states. A transformation
can be naturally described as a mapping t that transform each state s ∈ S into
a new state t(s) ∈ S.

To describe the quantity (such as energy) which remains invariant under this
transformation, we must describe the set V of values of this quantity, and we
must be able to assign, to each state s ∈ S, the corresponding value v(s) of this
quantity at the state s. In other words, we need to describe a mapping v that
maps every state s ∈ S into a value v(s) ∈ V .

In these terms, invariance can be described as follows. For each state s,
prior to the transformation, the analyzed quantity had the value v(s). After the
transformation, we have a new state s′ = t(s) in which this quantity has the
value v(s′) = v(t(s)). Invariance means that the value of the quantity does not
change after the transformation, i.e., that v(t(s)) = v(s) for all s ∈ S.

The expression v(t(s)) is a composition of v and t; so, invariance means that
the composition of v and t coincides with v. So, we arrive at the following
definition:

Formal definition of invariance: first try. We say that a morphism v :
S → V is invariant under the morphism t : S → S if v ◦ t = v.

Limitations of this definition. From a purely mathematical perspective, the
above definition may seem to capture the intuitive notion of invariance perfectly.

However, as we will show, from a physical perspective, this definition is far
from perfect. Consider for instance invariance of energy. We can certainly define
energy as a mapping v from states to real numbers. However, this mapping does
not necessarily capture all significant features of the notion of energy and as such
should not be taken as representing energy itself.

Clearly, for example, we can use different units to measure energy. If we use a
different unit for energy (e.g., joules from SI instead of ergs in the old SGS system
of units), then the numerical value of energy will change. So, if v(s) denotes
energy as expressed in the original units and v′(s) denoted energy as expressed in
the new units, then v(s) 6= v′(s). Thus, from the mathematical (and categorial)
viewpoint, we have two different functions v(s) and v′(s). By contrast, from
the physical viewpoint, both mappings represent the same physical quantity –
energy.

In other words, our intial definition of invariance required that we fix a unit
for the preserved quantity (e.g., for energy) – while from the physical viewpoint,
the notion of invariance does not depend on what unit we choose for representing
the preserved property. We are interested in capturing the invariant features
of the physical properties themselves apart from the details of the choices of
representational artifacts.

It is not only the choice of units, we may have more complex choices of differ-
ent scales. For example, the energy of a noise can be described in absolute units,
and it can be also be described in logarithmic scale of decibels. Consequently, in
order to generate a meaningful categorial definition of physical invariance it is
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desirable to modify the above definition in such a way that it should not depend
on the choice of units (or, more generally, on the choice of a scale) or on the
choice of a coordinate system.

Towards a more physically adequate definition. How can we improve
upon our initial definition? In order to control for choice of unit and scale in
our definition, let us first describe the notion of re-scaling in more general terms.
Let v(s) ∈ V be the value of the quantity in the original scale.

A change of a measuring unit means that we go from the original value
v = v(s) to the new value v′ = λ · v, where λ is the ratio between the two
measuring units. For example, going from meters to centimeters (a new unit
which is 100 times smaller than the original one) means that all the numerical
values are multiplied by 100. A logarithmic re-scaling means that we go from
v to v′ = log(v). In general, we go from the original value v to the new value
r(v), where r is the new function which represents the re-scaling procedure.

In the above two examples, re-scaling goes from the set of values to the same
set of values. However, it is possible that we have different ranges. For example,
when we change the unit of measuring angle from degree to a radian, we also
changes the range: originally, we had V = [0, 360], now, we have V ′ = [0, 2π].

So, in general, a re-scaling can be described as a mapping r : V → V ′. If
originally, we had a quantity v = v(s), then after re-scaling, we have a new
quantity v′(s) = r(v(s)). In category theory terms, this means that v′ = r ◦ v.

In these terms, a reasonable description of invariance means not only that
the original quantity v is invariant relative to the transformation t, but also
that all re-scaled expressions of this quantity must also be invariant.

How do we describe this class of possible re-scaled transformations of a
quantity? The only reasonable requirement is that if a morphism v : S → V
belongs to this class, then for every re-scaling (i.e., for every mapping) r : V →
V ′, the composition r ◦ v should also belong to this same class. Classes with
this property are known in category theory as left ideals [7, 11]. Thus, we arrive
at the following formal definition.

Formal definition of invariance: second try. By a left ideal, we mean a
class V of morphisms such that if a morphism v : S → V belongs to this class,
then for every r : V → V ′, the composition r ◦ v also belongs to this class.

We say that a left ideal V is invariant under the morphism t : S → S if
v ◦ t = v for all v ∈ V.

Limitations of this definition. The above definition is intuitively reasonable
if we consider transformations like shift or rotation that transform the state
of an object into a different state of the same object. However, the notion
of invariance in physics goes well beyond such transformations. For example,
physicists talk about C-symmetry which maps a particle (such as an electron
e−) into the corresponding anti-particle (e.g., positron e+).
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In such examples, it often makes sense to talk about invariance – in the
sense, e.g., that in similar situations, the electron and positron will have the
same energy. However, the “transformation” of the state of an electron into the
corresponding state of a positron is no longer a physically possible transforma-
tion.

In other words, in this situation, we no longer have a single set of states S:
we have a set of states S1 of an electron, we have a set S2 of states of a positron,
and the transformation is a mapping t : S1 → S2. Instead of a single mapping
v, energy can now be described by two different mappings v1 : S1 → V and
v2 : S2 → V , and invariance means that v2(t(s)) = v1(s) for all s.

The above definition does not capture this meaning. How can we capture
it?

Towards a more physically adequate definition. We would like to de-
scribe the fact that even if we fix a single scale, still a quantity (such as energy)
does not correspond to a single mapping v : S → V , but rather to several
mappings v1 : S1 → V , v2 : S2 → V from several different objects S1, S2, . . .

Of course, once we fix the object (= set of states) Si, the energy should be
uniquely defined for all states s ∈ Si. So, for every object Si, we can have at
most one function vi : Si → V .

Such a construction also exists in applications of category theory – namely,
the notion of a local section. This notion is usually defined in the context of fiber
bundles [2, 10], but it can also be applied to more general cases. For instance,
if we have a mapping π : E → B, then its section is a mapping f : b → E from
some subset b ⊆ B into E such that π(f(x)) = x for all x ∈ b. In categorial
terms, this condition can be described as π ◦ f = 1b.

This is directly related to the notion of an inverse morphism. Namely, in
a category, a mapping f : A → B is called inverse to a mapping π : B → A
if π ◦ f = 1A and f ◦ π = 1B . In the above definition, only one of these two
requirements is postulated, and only locally (i.e., for a subset b ⊆ B, so we can
call a section a local right inverse.

In our case, in every category, we have a mapping which maps every arrow
v : S → V into its domain S. What we want is a local section that assigns, to
some objects S, a morphism vS : S → V . In these terms, if we have a state
s ∈ S, then the value of the desired quantity in this state can be described as
vS(s).

How can we describe invariance in these terms? Suppose that we have a
transformation t : S → S′. Originally, the energy of a state s ∈ S is vS(s);
after the transformation, we have the new state t(s) ∈ S′, and the new value
of energy vS′(s′) = vS′(t(s)). Invariance means that the new value of energy is
the same as the old value, i.e., that vS′(t(s)) = vS(s) for all s ∈ S. In category
terms, this means that vS′ ◦ t = vS .

In this definition, we did not take re-scaling into account. To take into
account, instead of individual local sections, we should consider left ideals of
local sections – defined similarly to left ideals of morphisms. Thus, we arrive at
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the following definition.

Formal definition of invariance: our final result. Let V be an object.
By a V -local section v, we mean a mapping which assigns to some objects S
from the category, a mapping vS : S → V . By a local section, we mean a V -local
section corresponding to some codomain V .

We say that a local section v is invariant under the morphism t : S → S′ if
v is defined for both S and S′ and vS′ ◦ t = vS .

For every V -local section v and a morphism r : V → V ′, we can define
a composition v′ def= r ◦ v as a V ′-local section which assign to an object S a
mapping v′S = r ◦ vS : S → V ′.

By a left ideal of local sections, we mean a class V of local sections such
that if a V -local section v belongs to this class, then for every r : V → V ′, the
composition r ◦ v also belongs to this class.

We say that a left ideal of local sections V is invariant under the morphism
t : S → S′ if all local section v ∈ V are invariant under this morphism.

Comment. In this paper, we use category theory to provide a new physically
meaningful definition of an invariance with respect to a transformation – or with
respect to a transformation group. A similar category approach has been used
to show that a more natural definition of a class of transformations is not a group
(a class in which composition is well defined for every two transformations) but
a groupoid – crudely speaking, a class in which composition is defined only for
some pairs of transformations (as in a category); see, e.g., [4]. It is desirable to
analyze the relation between our approach and the groupoid approach.

Conclusion. The main objective of this paper was to formulate a general
notion of physical invariance in category terms. Surprisingly, producing such a
definition turns out to be more complex than we originally thought.

Our definition captures features of invariance that we believe to be crucial
in the physical context. Since the notion of invariance is extremely important
in working science, we want to present this definition to interested readers for
critical analysis. We canvassed two intermediate definitions before arriving at
one that we believe to be final. It may be that our definition is indeed final; in
this case, the readers’ critical analysis is necessary to confirm this fact.

It could also be that our definition is not really final, it is just one more step
towards the ideal definition. In other words, it is possible that we missed some
subtle features of invariance, that would require us to produce a more adequate
albeit more complex definition. It is likely also to be the case that the effort to
characterize physical invariance will depend, in part on the state of our physics.
As such, we remain open-minded with respect to our definition.

Acknowledgments. This work was supported in part by NSF grant EAR-
0225670, by Texas Department of Transportation grant No. 0-5453, and by
the Japan Advanced Institute of Science and Technology (JAIST) International

6



Joint Research Grant 2006-08. The authors are thankful to Roberto Poli for
valuable suggestions.

References

[1] S. Awodey, Category theory, Claredon Press, Oxford, 2006.

[2] D. Bleecker, Gauge Theory and Variational Principles, Addison-Wesley
publishing, Reading, Massachusetts, 1981.

[3] G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for
Differential Equations, Springer Verlag, New York, 2005.

[4] R. Brown, “From groups to groupoids: a brief survey”, Bull. London Math.
Soc., 1987, Vol. 19, pp. 113–134.

[5] A. Goldhaber, R. Shrock, J. Smith, G. Sterman, P. van Nieuwenhuizen, and
W. Weisberger (eds.), Symmetries and Modern Physics, World Scientific,
Singapore, 2003.

[6] P. E. Hydon, Symmetry Methods for Differential Equations, Cambridge
University Press, Cambridge, UK, 2005.

[7] L. V. Kuzmin, T. S. Fofanova, and M. Sh. Tsalenko, “Ideal”, Springer
Online Encyclopaedia of Mathematics, 2005,
http://eom.springer.de/i/i050030.htm

[8] F. W. Lawvere and S. H. Schanuel, Conceptual Mathematics: A First Intro-
duction to Categories, Cambridge University Press, Cambridge, UK, 1997.

[9] R. Nozick, Invariance:The Structure of the Objective World, Harvard Uni-
versity Press, Cambridge, 2001.

[10] N. Steenrod, The Topology of Fibre Bundles, Princeton University Press,
Princeton, New Jersey, 1951.

[11] M. Sh. Tsalenko and E. G. Shulgeifer, Fundamentals of category theory,
Moscow, Nauka Publ., 1974 (in Russian).

[12] A. Zee, Fearful Symmetry: The Search for Beauty in Modern Physics,
Princeton University Press, Princeton, New Jersey, 1999.

7


	Recommended Citation
	University of Texas at El Paso
	DigitalCommons@UTEP
	2-1-2007

	Towards a General Description of Physical Invariance in Category Theory
	John Symons
	Julio C. Urenda
	Vladik Kreinovich


