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Abstract 

 

How can we be certain that software is reliable?  Is there any method that can verify the correctness of 

software for all cases of interest? In this paper, we survey approaches to the problem of software verification 

and offer a new proof for why there can be no general solution.  Computer scientists and software engineers 

have assumed the lack of a solution as an informal working hypothesis.  We show formally that this 

assumption is correct for the kinds of software systems that we care about.    

 

Introduction 

 

In the computer science and software engineering communities the question of verification is a central 

concern. Computer scientists ordinarily devise a method for checking the correctness of software and then 

ask the extent to which that method can solve the verification problem.  In our time, few working computer 

scientists feel the need to develop a general solution to the problem of verification.  By a fully general 

approach we mean one that goes beyond specific methods for solving particular practical challenges to ask 

whether there is a method that can solve the verification problem for all cases of interest.  We will show that 

there is no such method. This view is held informally by most computer scientists and software engineers as a 

background piece of informed common sense.  In this paper, we demonstrate formally why the folk wisdom 

of computer scientists is correct.   

We do this because we are philosophers and as such we cannot resist poking around in matters that 

seem obviously true and relatively banal to normal people. While we argue that the verification problem has 

no general solution, it certainly can be solved for relatively small (where “small” is defined below) software 

systems for reasons that we will explain.  Specifically, we will argue that there are metalogical properties of 

software verification that show these small solutions are the best that we can hope for.   

The problem of software verification is relevant to epistemological questions concerning the role of 

computers in science.  What degree of certainty are we entitled to expect in theories that depend on in 

important ways on software? How does the kind of software intensive science that is currently ubiquitous 

differ in kind from the non-software intensive science of yore?  It also has ethical and legal consequences in 

situations where we must decide how much care needs to be taken in military, governmental, and commercial 

contexts to minimize software error. What level of software testing should we expect of a responsible 



2	
  

manufacturer in cases where failure can lead to serious harms?  We all want error-free software in science and 

technology but we will argue that we can never be certain that we have it in more than a very restricted set of 

domains.   

In this paper we examine existing approaches to the problem of error and verification in software 

engineering and theoretical computer science.  We lay out the verification problem as precisely as we can 

manage, before addressing possible solutions.  We do not provide a detailed survey of the verification and 

validation literature, this is a vast and diverse enterprise, most of which is oriented to specific practical tasks 

rather than to the kinds of general concerns that we care about. We explain the challenge involved in efforts 

to exhaustively test software and conclude that this challenge is insurmountable in all but the most trivial 

cases.  The practice of testing fails to serve as a general solution to the verification problem for well-

understood reasons.  Given this failure, we must turn to formal approaches.  The two principal kinds of 

formal approaches are axiomatic methods and model-theoretic methods.  We explain why both fail to satisfy 

the desiderata that we believe any acceptable method for verification must satisfy.  At present, axiomatic 

approaches are largely only of historical interest to practicing computer scientists for reasons we explain.  

Model-checking is a different matter.  Building on the techniques of model-theory, model-checking  is an 

approach that has had very exciting practical applications and offers our best hope for a formal solution to 

the problem of verification.  The greatest strength of model-checking, namely the power of its model 

theoretic formalism, turns out to be its Achilles heel with respect to the provision of a general solution to the 

verification problem.  As we argue, any piece of software that is required to implement ordinary arithmetic, 

meaning virtually all business and scientific software will not be completely verifiable.   

The arguments we present here are meant to close the door to a very specific kind of ambition.  We 

acknowledge that probably no practicing scientist in the software verification and validation community has 

the goal that we show is impossible.  Thus, our argument does two things.  First it provides a principled 

formal reason in support of the commonsense assumptions concerning the limits of verification.  In the 

scheme of things this is a less important contribution than our second point.  For philosophers, our work 

here takes an idealized vision of what is achievable via computational methods and software off the table.  If 

our argument stands, one cannot generally assume that we have, or that we can reliably create, error-free 

software.  These results demonstrate that the ideal of achieving error-free software should simply drop out of 

reflections on the scientific or ethical role of computers.   

 

1.0  The verification problem 

 

The problem of assessing the reliability of software can be thought of as showing the correctness of a 

software system. For the purpose of this paper, we use the terms “software” to mean a sequence of 

instructions written in a computer language (e.g., C++, Java, Ada, etc.).  Computer scientists call a system 
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software intensive if “its software contributes essential influences to the design, construction, deployment, and 

evolution of the system as a whole.” (IEEE 2000)  Understanding the reliability or correctness of software 

intensive systems involves more than just checking software.  This is because it is meaningless to check 

software for correctness independently of larger systematic and normative contexts within which the software 

is deployed.  Most fundamentally, for example, software systems are built according to specifications.  These 

specifications are intended to represent the purpose for which the software is being developed.  Specifications 

can be articulated with varying degrees of precision.  Generally, the more precise the better.  The problem of 

assessing how well the software system meets the specification is called the software verification problem; from 

here on, we will refer to that problem more briefly as the verification problem. The verification problem, 

succinctly stated, is 

 

 (The verification problem).   Given a software system S and specification H, determine whether S 

satisfies H.   

 

The satisfaction relation in this context can be articulated in model-theoretic terms.1  We will give a precise 

characterization of this relation in Section 3. However, an intuitive understanding of ‘satisfies’ will suffice for 

our immediate purposes.  There are a wide variety of ways that software can go wrong (See Floridi, Fresco, 

and Primiero 2015;).  However, for our purposes, we will define error in very simple terms as follows: 

 

 (DE) An error in a software system S is a failure to satisfy H.   

 

Given (DE), verifying a software system S is equivalent to showing that S will not fail to satisfy H in the sense 

of (DE). 

 In general, if we hope to verify software correctness, it makes sense to develop a method.  What 

should such a method look like? At the very least such a method should be applicable to normal modern 

software, and it should not require resources or time that would outstrip those available in the actual physical 

universe.  First, we want a method that scales well, meaning a method whose complexity is proportional to 

the size of the software system.  That is, the complexity of the method applied to a software system 

containing 200 lines of code should be no greater than twice that of a software system containing 100 lines of 

code.  We especially want to avoid situations in which the complexity of the method grows exponentially with 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Characterizing the verification problem in terms of the satisfaction of the specification departs from the way that 
prominent computer scientists sometimes talk.  So, for example, Emerson (2008, 28) describes the verification problem 
as determining “whether or not the behavior of M meets the specification h” where M is the program and h is the 
specification.  Our approach (See Section 3) does not depend on behavioral properties of the program as such.  Instead, 
we characterize the satisfaction relations in terms of a function that relates the models of the program/software system 
to models of the specification.    	
  



4	
  

the size of the software system. Second, we want a method that does not rely on lucky guesses or inspiration.  

Third, to help minimize the labor involved in the application of the method, it should be automatable.  

Fourth, we want the method to be able to handle the case in which more than one process is running at the 

same time since this is a feature of many modern software systems. Finally, we want a method that runs to 

completion in a time we care to wait.  

To summarize, the following seem like reasonable features that we should expect from such a 

method. It should: 

(D)2 

• (D1) Scale less than exponentially in problem “size” 

• (D2) Not have to rely on “inspiration” when applied  

• (D3) Be automatable 

• (D4) Capture concurrency3 

• (D5) Complete its task in a time we care to wait. 

 

In the software verification literature the criteria that researchers use to decide on what should count as a 

viable will depend largely on one’s view of the problem of software verification.  So, for example, Emerson 

2008 (pp. 27 and 35) suggests some desiderata of adequacy for such a method that partially overlap our 

criteria (D3) and (D5) above.  The criteria in Emerson 2008 (p. 35), however, are strongly (and in some 

particulars, exclusively) oriented to formal methods of verification (see Section 2.3 of the current paper).  Our 

interest is in a general solution to the verification problem rather than on the construction of, for example, 

provably correct software.  One could imagine only concerning oneself with small pieces of software that 

were built using formal methods that allowed proof of correctness.  If this were the case, then (D1) might not 

be relevant.  We cannot restrict ourselves to cases of this kind given our interest in a general solution to the 

verification problem.  	
  

In this paper, we show how the task of verification faces fundamental challenges in satisfying (D).  

Attempting to solve the verification problem, we will argue, collides with the limits of our power to eliminate 

error from humanly engineered software systems.  To help explain these limits, we survey existing approaches 

to the verification problem and draw some lessons.  At this stage we must emphasize that this overview 

articulates only the level of detail required to support our general thesis.  It does not, nor need it, given the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 Collectively, D2, D3, and D5 significantly overlap what we mean when we say a verification procedure is algorithmic. In 
particular, an algorithmic procedure is an effective procedure, and an effective procedure by definition implies (D2), 
(D3), and (D5).  One might, therefore, replace the union of (D2), (D3), and (D5) with a desideratum requiring an 
approach to verification to be algorithmic.   Articulating (D) as shown, however, supports some informative distinctions 
among the relative strengths of approaches that have been taken to the verification problem, and for this reason we 
choose to adopt (D) as is.   
3 Two programs, A and B, are concurrent if at least some portion of those programs execute at the same time. 
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arguments in Section 3, contain the kind of detail that would typically be included in a comprehensive, general 

technical review of verification methods (for a detailed survey of the latter kind, see Clark, Bloem, Veith, and 

Henzinger 2018).   

 

 

2.1  Verification and the Halting Problem 

 

The theory of computation is the formal study of how computing systems solve problems.  In order to make 

this a tractable enterprise theoretical computer science requires a clear account of what is meant by a 

computing system.  For the purposes of this paper we will restrict ourselves to the most widely accepted 

characterization of a computer: The Universal Turing Machine.  This is regarded as the minimal system that 

could serve as a general-purpose “computer” (Turing 1936; Boolos, Burgess, and Jeffrey 2007).   

Given this interpretation of “computer” we already know, in one sense, that a fully general 

algorithmic solution to the verification problem is not possible.  Here’s why:  Let P be an arbitrary program 

running on a Universal Turing Machine and let H be the requirement that P should eventually halt.   Stated as 

a verification task, the requirement can be framed as follows: 

 

Given a software system S (P running on a UTM) and specification H (tell whether P halts), 

determine whether S satisfies H. 

 

Turing 1936 proved that no algorithm that can determine whether P halts for all possible program input-

output pairs for P. This is the Halting Problem. Thus, for at least some cases, if the specification H contains a 

requirement that a software system halt, (D) cannot be satisfied for all cases of interest. 

By invoking the Halting Problem in this context we explicitly assume the received view of computing 

machines. In so doing we exclude from consideration exotic cases like, for example, devices capable of 

implementing hypercomputation.4  This restriction is justified for the following reasons: Moreover, modern 

general-purpose computing languages are Turing complete, i.e., programs written in them are equivalent to 

sets of instructions that can execute on a Universal Turing Machine.  Such languages are ultimately defined in 

such a way that they can fully describe anything a Universal Turing Machine can do.   

The Halting Problem is a well-known limiting result that stands as one of the intellectual landmarks 

of computer science.  However, from an engineering perspective, one can imagine granting the Halting 

Problem as an insurmountable obstacle to verification, but regarding it as a special case that can be ignored in 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4	
  Copeland et al 2016 make the case that hypercomputation should be taken seriously as a candidate for what is meant by 
“computation”,  given hypercomputation’s compatibility with the Church-Turing thesis.  We will not defend our choice 
to exclude hypercomputation in this paper, however see Davis (2006) for reasons to be skeptical.	
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practice.  One might distinguish, for example, insulating the practical task of developing methods for testing 

whether a system satisfies a specification.  One could simply stipulate that one is excluding verification tasks 

that involve the kinds of self-referential or meta-level features that characterize the Halting Problem.   

This screening off is, of course implicitly what happens in practice, when, for example the 

verification problem is conceived of as a testing problem.  In such contexts, specifications that include 

problematic kinds of self-reference will simply be ruled out ahead of time. In the next sections we will 

proceed on the assumption that specification H does not include the kinds of self-referential features (broadly 

construed) that would fall prey to the Halting Problem.   

It turns out that verification-as-testing also has intractable difficulties, albeit of a very different kind 

than the Halting Problem.5  

 

2.2  Verification-as-testing 

 

In software engineering, most efforts to address the verification problem and minimize error involve testing.  

Testing involves significant challenges.6  To see why, let S be a sequence of instructions written in some 

computer language L. The abstract executable structure of S can be represented as a control-flow-graph7 

(Nielson, Nielson, and Hankin 1999; Baier and Katoen 2008).  We define a path in a software system to be a 

path (Diestel 1997, p. 6) in such a graph.   We define the path complexity of S to be the number of possible 

paths in that control-flow graph.  Path complexity, thus defined, captures the space of possible ways that the 

software system could run to completion. 8 , 9   The number of paths in a program increases at least 

exponentially with the number of conditional statements in S. 10   Consider, for example, a 1000-line 

(instruction) software system that has a binary conditional statement every 10 lines on average.  The number 

of paths through such a program, and hence its path complexity, is 21000/10  =  ~1030.  In general, the path 

complexity of a program of M lines that has a binary decision branch on average every N lines is 2M/N, where 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 This problem has been known, at least informally, since the earliest days of software testing.   
6 Among philosophers, Jim Fetzer was the first to point out, informally, and based on empirical observation, that 
software verification via testing poses significant challenges (Fetzer 1988).  On our reading, many of the challenges that 
Fetzer points to are simply the result of bad software engineering practice.  For our purposes, we assume that software is 
being produced according to the highest contemporary standards of quality control. Theoretically interesting challenges 
are those that remain under these circumstances.  
7 A control-flow statement in S is a statement that can, based on a condition that may not always obtain, change the 
order of execution of the statement in S. 
8 Note that this definition requires that S can run to “completion”.  Some software systems, such as operating systems, 
by design “run forever”, and thus have no “completion”. 
9 This definition of path complexity is different from McCabe complexity, which is a count of the number of independent 
paths in S (McCabe 1976). 
10 A conditional statement is a statement of the form “If X, do Y”. A Turing complete language, in addition to 
implementing conditional statements, must also implement loops.  For the purpose of this paper, we can restrict the 
analysis to a program whose control statements are “if-then” statements only.  Why? To show that verification-as-testing 
fails to satisfy (D1), it is sufficient to show that even if S contained only if-then control constructs, verification-as-testing 
would fail to satisfy (D1).  (Accommodating loop control constructs in S only increases complexity.)  
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M > N.  We call this exponential scaling of the number of paths in S with the number of control (for our 

purposes, conditional) statements in S the path-complexity catastrophe; in control-flow-graph terms, it is 

equivalent, for some software systems, to what is sometimes called the “state-explosion” problem (Valmari 

1998). 11  

 A 1000-line program is extremely short by contemporary standards.  For example, it is not 

uncommon for large scientific simulators to contain ~105 lines of code (Horner 2003).   The UNIX/Linux 

operating systems each contain at least  ~106 lines of code.  Facebook’s software system reportedly contains 

~61 million lines of code! 

  Why is high path complexity significant for verification-as-testing?  One way to begin to answer this 

question is to consider the degree of confidence we should assign to the results of a system.  A natural way of 

thinking about the appropriate degree of confidence we would give to these systems is in terms of their 

reliability.  We can be more confident in the behavior of a system if we can judge it to be reliable.   

 How can we determine the reliability of software systems through testing?  In an empirical scientific 

domain that uses no software (e.g., measuring the temperature of a material object, using only a 

thermometer), there is a relatively straightforward approach that an agent could take.  Typically, the 

distribution of errors (in the case of the thermometer, the distribution of errors presumed to be contained in 

a set of measurements) in such a domain can be characterized by conventional statistical inference theory 

(CSIT) (Hogg, McKean, and Craig 2005, Chaps. 5-12).   CSIT requires us to randomly draw (Hogg, McKean, 

and Craig 2005, Df. 5.1.1) a sample from the population of interest, then apply statistical tests to the sample 

to assess the probability that a specific hypothesis (H) about the population holds.  Often the sample size 

required to test a hypothesis of interest in such a case is small -- on the order of 100.  

 In the case of a domain that uses non-trivial software in an essential way, we cannot, in all cases of 

interest, be assured that CSIT can be used to characterize the distribution of error.  It has been shown 

(Symons and Horner 2017) that it is not possible to ensure, in all cases of interest, that the errors in a 

software system are characterizable by random variables (for a definition of “random variable”, see Chung 

2001, Chapter 3). CSIT requires (here, error) distributions to be defined in terms of random variables, so we 

cannot, for all software systems of interest, be assured that CSIT is applicable.  It is always possible, 

furthermore, to extend (perhaps unintentionally) any software system whose error distribution is 

characterizable by a distribution of random variables to a software system the distribution of whose errors is 

not characterizable as a distribution of random variables (Symons and Horner 2017).   

 If we assume that verification is testing, and we cannot apply CSIT to testing, we must test all paths 

in a software system in order to characterize its error distribution.  But that approach is intractable.  To get at 

least an informal sense of this problem, suppose that we could test one path per second in a 1000-line 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11 For a complete discussion of the path complexity catastrophe see Symons and Horner (2014). 	
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program that contained, on average, a binary branch per 10 lines.  Exhaustively testing all paths in such a 

program would take more ~1013 lifetimes of the Universe to test all paths in the code. 

 It might be objected to the above that the “path-complexity catastrophe” is largely determined by the 

relatively slow speed of human action or comprehension.  One might imagine, such an objection might go, an 

entirely automated testing regime in which no human involvement is required.   

 Although it is difficult to discern what a test regimen completely devoid of human involvement could 

be (Turing 1950), let’s entertain the notion that there might be such a scheme.  In that case, we note that the 

test regimen must nevertheless involve coordinated collecting of test results at a given point in space (Cover 

and Thomas 2006; Hennessy and Patterson 2007; Reichenbach 1957).  That communication is speed-of-light 

limited (Reichenbach 1957).  Let’s suppose, for example, that the average distance such communication must 

traverse is 1 meter, permitting us to replace the time to execute a test case in the analysis above to (1/(3 x 108 

m/sec) ~) 3 x 10-9 sec. In this regimen, therefore, it would take “only” (1013 x 10-9 ~) 104 lifetimes of the 

universe to test all paths in a non-trivial 1000-line software system.  Thus, even if the time to execute a test 

case were limited only by speed-of-light communication, the path-complexity catastrophe would persist on 

speed-of-light scale. 

 To address this concern, it has been suggested that parallelizing tests (i.e., executing those tests at the 

same time) on a sufficiently large computer could, in theory, make the path-complexity catastrophe go away.  

However, even if this were a solution to the problem for some software systems, it is significantly limited for 

those software systems whose testing is state-history-dependent (e.g., large climate simulators), because the 

software sequences to be tested are not decomposable to anything smaller than a sequence that produces an 

entire system trajectory. 

 For at least some software systems, even maximally parallelizable testing cannot make the path-

complexity catastrophe go away. Here’s why.  The minimum time, tcoord, to coordinate at a given spatial 

location, P, the reports of tests executed in parallel at M disjoint spatial  locations x1, x2, …, xM,  is ~ Md/c, 

where  

 

• d > 0 is the mean of normally distributed one-way distances between P and the xi,  i = 1, 2, 

…, M  

• xi  ∩ P = Ø for each i  

• Ø is the null set (null region) 

• c is the speed of light  

 

(For a more detailed discussion, see Amdahl 1967).  Note that for any d, as M →  ∞,  tcoord →  ∞. Thus, no 

matter what value d has, there is a positive lower bound to tcoord, and a corresponding upper bound on the 
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path-complexity of some software system that can be tested in any finite time.   This argument generalizes to 

the case in which there is merely some finite time – not necessarily determined by light time-of-flight -- 

required to coordinate results among M separate tests, provided c is finite. 

 In summary, verification-as-testing cannot satisfy at least (D1) and (D5) for all cases of interest.  

Given that testing will not succeed, we must explore alternative strategies. 

 

2.3   Formal methods of verification 

 

What can be done to overcome the limits of verification-as-testing?  It would seem that formal methods, 

roughly analogous to formal methods in logic (see for example Chang and Keisler 2012; Gries 1981) could 

provide purchase on the verification problem.  Such approaches provide at least mathematically well-defined 

frameworks within which a variety of desirable meta-level properties (e.g., consistency and completeness) can 

be characterized by finite procedures. Is there some equivalent strategy for proving the correctness of a 

software system?  There have been some valiant efforts in this direction.   

In this section, we sketch some examples of how the program of formal verification has been 

pursued. This overview closely follows Emerson’s 2008 retrospective and is not intended to be exhaustive or  

original.  Our purpose here is only to introduce and illustrate some of the main achievements of the formal 

verification approach (for a recent survey of these topics, see Clark, Bloem, Veith, and Henzinger 2018).  We 

will argue that formal methods of verification variously meet at least some of (D1) – (D5) for at least some 

software systems.  But ultimately, as we argue in Section 3.0, no verification method can satisfy (D5) for all 

cases of interest, and that result limits the detail that is proportionate to include in the historical overview that 

follows (i.e., in Sections 2.3.1 and 2.3.2). 

 

2.3.1  The “axiomatic” approach to formal verification 

 

One way to formalize the verification problem is to cast it as a question about whether a given software 

system S is equivalent to a theorem in a theory, where that theory is formulated as a set of axioms that 

captures a specification H.  In this paradigm, one manually constructs proofs of correctness for 

(deterministic) programs that start with an input and terminate with an output. To do this, a computer 

program is first translated into a set of sentences in the formal language L in which H is expressed.  We then 

attempt to show that the resulting set of sentences has a proof in an axiom system (that determines H). This 

approach to formal verification is called “axiomatic” verification.  Floyd 1967, for example, provided some 

basic principles for this approach by proving “partial correctness” in such a framework, as well as articulating 
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termination and total correctness forms of liveness properties (Emerson 2008, p. 29).12 Extending this idiom, 

Hoare 1969 provided an axiomatic basis for verification of partial correctness using axioms and inference 

rules in a formal deductive system (Emerson 2008, p. 29).  

The Floyd-Hoare framework provided many useful insights. The approach facilitated the 

investigation of important meta-theoretic properties such as soundness and (relative) completeness, as well as 

compositionality.  This framework, however, turned out to have limited utility in practice for several reasons 

(Emerson 2008, p. 29).  First, the approach scaled exponentially in the number of terms in the theorems to be 

proven, thus failing to satisfy (D1).  Second, the approach often required discovering, in non-mechanical 

(“inspired”) ways, proof strategies specific to the problem of interest, and failure to discover a proof did not 

imply that there was no proof possible, thus failing to satisfy (D2).  Third, there was no known way to 

automate the approach, thus failing to satisfy (D3).  Fourth, the framework could not express the temporal 

aspects of concurrent programs, thus failing to satisfy (D4).  

 Pnueli 1977 extended the Floyd-Hoare approach to capture least part of concurrency.  Pnuelli 

proposed, as a working hypothesis, that temporal logic could be used for reasoning about concurrent 

programs.13  To capture concurrency, he defined a temporal logic-based system that included as basic 

temporal operators F (sometimes), G (always),  X (next-time), and U (until) (Emerson 2008, p. 30).  Besides 

these basic temporal operators applied to propositional arguments, Pneuli’s system permitted nested and 

boolean combinations of subformulae (Emerson 2008, p. 31).  

Like the Floyd-Hoare framework, Pneuli 1977 took an axiomatic approach to verification.  Like the 

Floyd/Hoare approach, Pneuli’s approach cannot satisfy (D1) and (D2).  Nevertheless, Pneuli’s incorporation 

of temporal logic into the formal description of software systems, it turned out, provided powerful resources 

for addressing (D4).   

  Temporal logic comes in two broad flavors (Emerson 2008, pp. 31-32, See also Venema 2001):  

  

(1) Linear Time Logic (LTL (Pneuli 1977)) 

In LTL, an assertion h is interpreted by default to apply to a single path.  (Here, “path” 

means a sequence of instructions that represents one way that a system could run.)  When 

interpreted over a program there is an implicit universal quantification over all paths of the 

program.  

 

(2) Branching Time Logic (BTL) 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12 A liveness property asserts that program execution eventually reaches some desirable state (Owicki and Lamport 
1982). 
13 Concurrent systems are often reactive systems (i.e., they execute in response to a stimulus (e.g., from a sensor) outside 
those programs). Reactive systems are often nondeterministic, so their non-repeatable behavior is not amenable to 
testing. Their semantics can be given as infinite sequences of computation states. 
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An assertion h of a branching time logic is interpreted over computation trees. A branching time 

logic has a universal future-time quantifier A (for all futures) and an existential future-time 

quantifier E (for some future) paths. These quantifiers allow us to distinguish between AFP 

(along all futures, P eventually holds and is thus inevitable)) and EFP (along some future, P 

eventually holds and is thus possible). 

 

 

One widely used branching time logic is known as Computation Tree Logic (CTL). Its basic 

temporal quantifiers are A (for all futures) or E (for some future) followed by one of F (sometime), G 

(always), X (next-time), and U (until); compound formulae are built up from nestings and propositional 

combinations of CTL subformulae (Emerson 2008, p. 32, See also Huth and Ryan 2004).  

CTL and LTL do not have the same expressive power (Emerson 2008, p. 32). There is an ongoing 

debate as to whether linear time logic or branching time logic is better for formal verification objectives 

(Emerson 2008, p. 32). 

One prominent logical framework familiar to logicians and that can capture CTL is the mu-

calculus (Kozen 1983).  The mu-calculus provides operators for defining correctness properties using 

recursive definitions and least fixpoint and greatest fixpoint operators. Least fixpoints correspond to 

well-founded or terminating recursion, and are used to capture liveness or progress properties 

asserting that something does happen. Greatest fixpoints permit infinite recursion. They can be used 

to capture safety or invariance properties.  The mu-calculus is very expressive and flexible.  It is still 

in wide use in formal verification methods (Emerson 2008, Section 4).  WHAT ARE WE NEEDING 

TO SAY ABOUT THE MU CALCULUS??? 

   

 

 

 

2.3.2  Model-checking 

Casting the verification problem in a temporal logic does not, by itself, overcome all the problems 

faced by axiomatic approaches.  Framing the problem in terms of temporal logic does nothing to address 

(D1) – (D3), and there is no guarantee that it would satisfy (D5).    To help address these issues, Clarke and 

Emerson 1981 observed that if in contrast to the axiomatic approaches to proof of correctness, we derived a 

software system S directly from H we might be able to overcome at least some of the problems of the 

axiomatic approach.  This proposal  – formally deriving software from a specification – is often called the 

“synthesis” approach to formal verification of software.   
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The synthesis approach, as such, does not guarantee that (D1), (D2) and (D5) are satisfied.  One way 

to help to meet (D1) and (D5) is to require that the description of S define a finite state graph M. M can then 

searched, via pattern specifications (which can be of arbitrary complexity), to determine whether M satisfies 

H.   

Clarke and Emerson 1981 proposed, in particular, that we exploit the “small model property”14 

possessed by certain decidable temporal logics. Exploiting the small model property of these decidable 

temporal logics has at least two further virtues:  The method is sound: if the input specification is satisfiable, 

the method generates a finite global state graph that is a model of the specification, from which individual 

processes of S can be derived. The method is also complete: If the specification is unsatisfiable, it would be 

possible to determine that is unsatisfiable:  given any finite model M and CTL specification H one can 

algorithmically check that M is a genuine model of H by evaluating (verifying) the basic temporal modalities 

over M based on the fixpoint properties.  Composite temporal formulae comprised of nested subformulae 

and boolean combinations of subformulae of CTL could be verified by recursive descent. These features: 

CTL, fixpoint properties, and recursion – became the foundation of what is now called “model checking” 

(Emerson 2008). 

 How well does model-checking work?  In practice, model-checking is typically implemented in a 

model checker.  A model checker is a software tool that helps to assess whether a software system S is a model 

of a specification H.  Model checkers that are formulated in CTL can be quite useful in practice, especially 

when applied to finite-state concurrent systems. Moreover, CTL has the flexibility and expressiveness to 

capture many important correctness properties. In addition, a CTL model checking algorithm has reasonable 

efficiency: it is polynomial in the specification size (i.e., it satisfies (D1)).  

 The fundamental accomplishment of model checking has been the enabling of broad scale formal 

verification. Today many industrial-application systems have been verified using model checking. Model 

checkers have verified protocols with millions of states and hardware circuits with at least 1050 states (Clark, 

Bloem, Veith, and Henzinger 2018).  

For example, model-checking has been used to verify (Clark, Bloem, Veith, and Henzinger 2018)  

 

• a cache coherence protocol 

• the bus arbiter for the PowerScale multiprocessor architecture 

• a high-level datalink controller 

• a control protocol used in Philips stereo components 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
14   A system K has the small model property if and only if any satisfiable formula in K has a “small” finite model, i.e., a 
model whose size is a polynomial function of the formula size. 
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• an active structural control system to make building more resistant to earthquakes15  

 

For at least some programs, model-checking evidently satisfies (D1)-(D4).  In addition, model 

checking supports both verification and refutation of correctness properties. Since most programs do contain 

errors, an important strength of model checkers is that they can readily provide a counter-example for at least 

some classes of errors.   

Despite its power, neither model checking nor any other verification method can satisfy (D5) ); the 

requirement that the method complete its task. in all cases of interest, as we now proceed to argue. 

 

3.0  Can any method solve the verification problem for all cases of interest? 
 

Model-checking satisfies (D1) - (D5) for at least some software systems. We will now argue that any 

software system that (a) is written in a Turing complete language and that (b) must implement at least 

Robinson arithmetic16 (Mostowski, Robinson, and Tarski 1953)17 has, as a consequence of the Löwenheim-

Skolem theorem (Löwenheim 1915; Skolem 1920), an infinite number of non-isomorphic models and thus 

cannot be verified in a finite time,18 i.e., cannot satisfy (D5). 

To show this, we first posit that in any verification regimen, the following must hold (where S is a 

software system and H is a specification): 

 

(A)  S satisfies a specification H up to model-identity if each model (in the sense of Chang and Keisler 

2012, p. 32) of H is homomorphic to some model of S.   

 

Corresponding to (A), we posit that verification must satisfy:19 

 

(Q)  A verification V verifies that S satisfies  H up to model-identity  if V verifies that each model (in the 

sense of Chang and Keisler 2012, p. 32)  of  H is homomorphic to some model of S. 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
15 The model checker used in this case found errors in the original design of the system.  Some of these errors would 
have made buildings less resistant to earthquakes. 
16	
  Robinson arithmetic is “ordinary” (Peano) arithmetic without the Peano induction axiom.	
  
17	
  Virtually all business and scientific software must implement arithmetic.	
  
18 Note that a theory of arithmetic (or anything else) that is not finitely axiomatizable cannot be implemented on a finite 
Universal Turing Machine.  No second-, or higher-, order theory of arithmetic, for example, can be implemented on a 
Universal Turing Machine. (See for example Chang and Keisler 2012, Chapter 1.) 
19 Although beyond the scope of this paper, it’s worth noting that criteria (A) and (Q) rest on a theory of verification 
that does not appear to be limited to software regimes as such, and thus might help to characterize verification in 
ordinary empirical science. 
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We can motivate (A) and (Q) as follows.   

First, we note that it is more than difficult to imagine that there could be a sense of  “S satisfies H” in 

which at least one model of H is not homomorphic to some model of S.   

It might, however, be objected that (A) and (Q), which require that each model of H is 

homomorphic to some model of S is too strong.  Why, such an objection might go, couldn’t we just show 

that  

 

(O) One model B of H is homomorphic to some model of S? 

 

On the surface, (O) seems sensible; in fact, (O) reflects the way “verification” is sometimes, if not 

often, performed in practice (Black, Veenendaal, and Graham 2012).  There is, however, a fundamental 

limitation to this approach.   

To see this, let H and S be described as above.  Suppose there were a model A of H that was not 

homomorphic to some model of S.  This would imply that there is a sense in which H expresses a 

requirement that is not addressed by S.   

 

 Consider now the following: 

 
 

1. By (Q), in order to verify that S satisfies H up to model-identity, we must verify that every model of 

H is homomorphic to some model of S. 

2. Let H be the requirement to implement a finite first-order axiomatization of at least Robinson 

arithmetic on a Universal Turing Machine. This requirement is implied by any requirement to 

implement ordinary arithmetic on a Universal Turing Machine. Note that the specifications of 

virtually all business and scientific software imply this requirement. 

3. The Löwenheim-Skolem theorem (Löwenheim 1915; Skolem 1920) implies that there are an infinite 

number of non-isomorphic models of any finite first-order axiomatization of Robinson 

arithmetic.  Therefore, by (1),  (2), and Löwenheim-Skolem, verifying that S satisfies H up to model-

identity requires verifying that that each of the infinite number of non-isomorphic models of H is 

homomorphic to some model of S.    

4. Now note that S could be anything – S is merely an attempt, and possibly a flawed one, to satisfy H. 

Because we cannot a priori presume any properties of S, in general, given that a model B satisfies H, 

we cannot, for arbitrary B, infer that B is homomorphic to a model of S except by verifying, in a 

distinct action, that B is homomorphic to a model of S. Such a verification activity takes some non-

zero time. 
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5. For all models of H, let tmin > 0 be the shortest time required to show a model of H is homomorphic 

to a model of S.   

6. By (3), (4), and (5), for at least some software systems, we must perform an infinite number of 

distinct verification actions to verify that S satisfies H up to model-identity.   These actions will 

collectively take (tmin times infinity =) infinite time. Thus, we cannot verify in a finite time (D5) that 

an arbitrary S satisfies an arbitrary H up to model-identity. 

 

We conclude, therefore, that, even were the Halting Problem solvable, no verification method can 

satisfy (D5) for all cases of interest. 

 

4. Conclusion: How we Ought to Proceed 

 

The most important implication of this result concerns the scope of software specifications. One practical 

response would be to rethink the way we think about software specification in a way that limits its generality 

and ambition.  As we have seen, for example, all approaches to software verification have successful 

applications in relatively small pieces of software.  Even in cases involving arithmetical operations, one could 

test a system that only performs a relatively small, finite number of tasks within specified parameters.  For 

example, there is no need for a thermostat system in a home to perform more than a very small set of 

arithmetical operations.  One could even imagine such systems operating with finite look-up tables for all the 

arithmetical operations that they would need in order to satisfy a modest specification.   

 It is highly unlikely that restricting specifications for software along these lines will be of interest in 

the scientific or consumer contexts.  Understanding the trade-offs involved as we weigh the importance of 

verifying software correctness with the benefits of large-scale software are not matters that we ought to leave 

solely to engineers and corporate leaders.   

Elsewhere, we have argued that philosophers especially need to carefully reflect on the nature of 

science when the reliability of our most important instruments is impossible to determine with confidence  

(Symons and Horner 2014).  Perhaps more importantly, philosophers also need to reflect on the ethical 

implications of creating ever larger, more connected, systems with more layers of interdependence and 

vulnerability.  Responsibility for failure is increasingly difficult to assign.  The price of failure is increasingly 

high.  In the Toyota case, for example, verifying the software that led to unintended acceleration in vehicles 

has proven impossible. [CITE] At the same time, these systems provide us with highly efficient and generally 

excellent cars.  Is the loss of a handful of lives an acceptable price to pay for cars with more desirable 

features?  How should one approach the risks associated with purchasing such a vehicle?  What duty does the 

manufacturer have to explain the presence of error in its product?  
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How do we balance our desire to be connected electronically to our toasters and toothbrushes, or to 

fill our homes with smart speakers/microphones/cameras with the deep vulnerabilities that these systems 

introduce in our lives and social systems? The first step in beginning to answer these questions involves 

understanding the limits of our ability to minimize error in these systems. 
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