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Abstract In this paper, we argue for the centrality of prediction in the use of computa-
tional models in science. We focus on the consequences of the irreversibility of computational
models and on the conditional or ceteris paribus, nature of the kinds of their predictions. By
irreversibility, we mean the fact that computational models can generally arrive at the same
state via many possible sequences of previous states. Thus, while in the natural world, it is
generally assumed that physical states have a unique history, representations of those states in
a computational model will usually be compatible with more than one possible history in the
model. We describe some of the challenges involved in prediction and retrodiction in compu-
tational models while arguing that prediction is an essential feature of non-arbitrary decision
making. Furthermore, we contend that the non-predictive virtues of computational models
are dependent to a significant degree on the predictive success of the models in question.

Keywords Computational models · Prediction · Complexity

Introduction

Computational models are of interest to philosophers insofar as they promise new ways to
explore scientific hypotheses and provide access to the inner workings of complex phenomena
or to target phenomena that are difficult to examine by other means. Computational models
are currently allowing research into topics where cognitive, ethical, political, or practical
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barriers would otherwise loom large. Whether in nuclear weapons testing, climate science,
studies of the behavior of epidemics, or studies of the internal dynamics of stars, to take just a
handful of cases, computational models are often the only viable research tool for scientists.

To date, computational models have generated two related kinds of questions for philos-
ophers of science. First, what additional epistemic resources, if any, do such models provide
us? (Humphreys 1994) Second, in what ways, if any, do the kinds of explanations derived
from computational models differ from those provided by other kinds of scientific models?
(Guala 2002, 2005; Parker 2009; Winsberg 2010; Frigg and Reiss 2009)

In this paper, we consider a third set of questions concerning the features of the predictions
derived from computational models. We believe that careful consideration of prediction in
computational modeling can shed light on more general concerns in the philosophical lit-
erature about the scientific status of these models. We focus on the consequences of the
irreversibility of computational models and on the conditional nature of their predictions.
The conditional, or ceteris paribus, nature of the kinds of predictions provided by compu-
tational models will be discussed in detail below. By irreversibility, we mean the fact that
computational models can generally arrive at the same state via many possible sequences
of previous states. Thus, while in the natural world, it is generally assumed that physical
states have a unique history, representations of those states in a computational model will
usually be compatible with more than one possible history in the model. This is an impor-
tant feature of computational models which is directly relevant to philosophical questions
concerning the status of these models and which has generally been overlooked in the philo-
sophical literature. We believe that addressing some of the larger philosophical questions
about computational models depends on specifying as precisely as possible, the manner in
which computational models generate predictions.

Our analysis of prediction in computational models contributes to the existing philosoph-
ical literature on the epistemic status of models. However, our motivation in this paper is
practical as well as philosophical. On our view, the primary purpose of computational mod-
eling is to allow us to intervene in, or respond to, complex natural or social processes in
a non-arbitrary manner. In addition to their increasingly significant role in scientific inves-
tigation, computational models figure centrally in policy deliberations concerning climate
change and economic policy making (Meadows 1972; Holling 1978; Walters 1986; de la
Mare 1996; Brunner 1999; Pielke 2003; Adams 2004; Walters and Martell 2004; Allan and
Stankey 2009a; Rockström et al. 2009; Likens 2010; Butterworth and Punt 1999; Lee 1999;
Morgan and Morrison 1999; Doak et al. 2008; Allan and Stankey 2009a,b; Ivanović and
Freer 2009; Chapman 2011). Thus, the problem of understanding the epistemic status of the
evidence provided by computational models has direct practical significance.

Given the central place of the predictive power of computational modeling in policy deci-
sions, and given the high stakes involved in many of these policy decisions, we are concerned
that the existing literature on modeling demonstrates some misunderstanding of prediction
in computational models. For example, many authors have argued that the use of computer
modeling in these contexts is unwarranted because such models simply cannot provide reli-
able predictions of complex dynamics in the systems of interest. (Ascher 1989, 1993; Brunner
1999; Oreskes 2000, 2001; Beven 2002; Aligica 2003; Beven 2006) Such criticisms fall into
roughly four principal types:

(a) computational models have a poor track record of prediction;
(b) model predictions are not testable because of their conditional nature;
(c) models reflect the subjective beliefs and assumptions of their creators;
(d) the principal purpose of computational models is not to predict.

123



How Computational Models Predict 811

Critics of the predictive power of computational models generally continue to advocate for
the use of such models while arguing that the benefits of computational modeling are limited
to one or more of the following:

(a) explanation of past events;
(b) increased understanding of natural processes;
(c) learning;
(d) providing an avenue for communications.

These roles are presented as alternatives to what is sometimes regarded as a naïve attach-
ment to the predictive power of models. In our view, this line of criticism risks detaching
these models from their most important role in decision making. Critics seem to assume that
prediction is an ideal or discretionary input, rather than a requirement for decision making.

Our paper describes some of the challenges involved in prediction and retrodiction in
computational models while arguing that prediction is an essential feature of non-arbitrary
decision making. Furthermore, we contend that the non-predictive virtues of computational
models, such as the four listed above, are dependent to a significant degree on the predictive
success of the models in question.

Computational models have some undeniable limitations with respect to prediction and
retrodiction. However, these restrictions are not unique to computational models. We argue
that all so-called special sciences are subject to the same ceteris paribus conditions. Ceteris
paribus conditions, or provisos, are a ubiquitous feature of explanation and prediction in the
special sciences. The predictive power of computational models, like the predictive power
of the special sciences more generally, will always be conditional in nature. We will explain
the role of conditional prediction in computational models in more detail here.

One counterintuitive result of our investigation is our observation that prediction in com-
putational models is more reliable than retrodiction. On reflection, this is a straightforward
result of the nature of computational models. However, recognizing this fact should cause
us to think carefully about the explanatory value of the kinds of retrodictive accounts of
complex systems which we derive from computational models. We will explore some of the
implications of this feature of computational models below.

1 Deciding and Predicting

As discussed above, we believe that the modeling community bears an unusually high level
of social responsibility. In recent years, public attention has focused primarily on the use
of modeling for climate change initiatives, but perhaps even more commonly, results from
modeling in economics have direct bearing on decisions in governmental and corporate insti-
tutions. Many authors (Ascher 1989, 1993; Brunner 1999; Oreskes 2000, 2001; Beven 2002;
Aligica 2003; Beven 2006) regard this influence as unwarranted. It is useful from the outset to
understand how we ought to evaluate skeptical attitudes toward model predictions. To begin
with, we should examine the distinct kinds of skepticism which we might encounter: First,
let’s deal with the most extreme kind of skepticism with regard to prediction before tack-
ling the more difficult practical questions concerning the evidential status of computational
models.

Given complex problems, policy makers and others are forced to decide how to evaluate
and interpret evidence with respect to alternate courses of action. Clearly, there are reasons
to be cautious with respect to the predictive power of scientific models. However, notice that
our reasons for skepticism are relative to our criteria for judging the predictive success of a
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model. Once we adopt higher standards, fewer models will pass our test. Perfect predictive
success is clearly an unreasonable criterion to apply when judging a model. Few scientists
would demand this level of predictive power. In the context of practical decision making,
skepticism is an unreasonably expensive luxury.

Given the need to act in a non-arbitrary manner, the core problem is to determine what
tool currently provides the most reliable predictions concerning the phenomena of interest.
In this spirit, the question would shift from ‘can model predictions be trusted?’ to ‘how
do we compare models to one another and to other approaches to prediction?’ Clearly this
new question can be understood in information theoretic terms where predictability can be
contrasted with randomness. For example, while we cannot trust weather forecasts in detail
beyond a window of about 5–6 days, we can be confident that there is not an equal probability
that the temperature in El Paso on an August day could be 40 ◦C or −40 ◦C (Boschetti et al.
2010). While El Paso weather is difficult to predict with any precision during the short August
rainy season, we can be highly confident that our pipes won’t freeze in August.

While perfect precision with respect to complex natural and social processes may not be
available for finite beings, we contend that the epistemic function of computational models
derives from their capacity to limit the space of possible futures that we need to consider in
deciding on a course of action. On our view, computational models should stand the test of
experience and should be discarded or modified if they fail to improve our capacity to act in
relation to the relevant complex systems under consideration.

At this point we are ready to explain the connection between decision making and the
acquisition of new evidence. New evidence can allow an epistemic agent to eliminate irrele-
vant alternatives for action. Hintikka (1962) noted this basic connection between knowledge
and alternative possibilities in his early articulation of epistemic logic. He put the connection
in modal terms which we can paraphrase straightforwardly as follows: To know p means to
be in the position to rule out possibilities in which it is not the case that p. Once we begin
to think about inquiry and decision making in terms of ruling out possibilities, the modal
character of epistemic terms is relatively obvious. Just as a necessary truth is one which is
true in all possible worlds, an agent’s knowledge can be understood as the set of truths which
obtain in all of the agent’s epistemically possible worlds. In other words, for an agent to know
p means that in all worlds compatible with the agent’s knowledge, it is the case that p. While
this is an admittedly idealized conception of knowledge the general view applies equally well
to practical decision making. So, for example, in contexts where probabilistic measures are
unavoidable, we can understand Hintikka’s approach as a way of thinking about the level of
significance we give to alternative possibilities. More practically still, we can understand the
elimination of irrelevant alternatives in terms of the level of resources we devote to alterna-
tive possibilities. As we can see in the following passage, the core of Hintikka’s view derives
from some very ordinary considerations:

To take a simple example, let us suppose that I am getting ready to face a new day in
the morning. How does it affect my actions if I know that it will not rain today? You
will not be surprised if I say that what it means is that I am entitled to behave as if it
will not rain – for instance to leave my umbrella home. However, you may be surprised
if I claim that most of the important features of the logical behavior of knowledge can
be teased out of such simple examples. (Hintikka 2007, 11–12)

For cases where uncertainty is unavoidable, examples like this can be recast in probabilis-
tic terms such that the threshold for the decision to take the umbrella will be crossed given our
confidence that the weather forecast or some other factors rules rainy futures out or in. Mod-
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ern work in epistemic logic has built upon this view of the relationship between knowledge
and possibility. So, for example, the connection between epistemic and pragmatic consider-
ations continues into the 1980s and 1990s. Many researchers in Artificial Intelligence define
belief, for instance, as the set of propositions which an agent would be willing to act upon.
In this paper, we identify the predictive power of computational models as their capacity to
help us to exclude some range of possible future scenarios. Their epistemic power is simply
their capacity to help us reduce the range of possibilities which we need to consider when
we make our decisions.

We assert that (in spite of many complicating factors) computational models stand or fall
by reference to their predictive power. We understand predictive power in terms of the power
to permit decision makers to eliminate irrelevant future states.

Of course, models can also be used in exploratory fashion (Humphreys 1994; Boschetti
2010), highlighting dynamical behaviors of which we may not be aware. Failing to recognize
these behaviors means the inability to plan for them. A full analysis of this topic is beyond
the scope of this work, but within the current discussion we notice that, even in the case of
the exploration of novel system behavior, the final outcome is an enriched predictive power:
we are now able to envisage behaviors which previously we did not expect. In other words,
computational models enhance our predictive power by improving our ability to estimate
the occurrence both of events we were previously aware of and events we became aware via
the very use of models. Clearly, computational modeling allows us understand the implica-
tions of our assumptions in ways that would be difficult with unaided human intelligence.
So, not only does prediction involve eliminating irrelevant alternatives, it also involves the
discovery of unanticipated implications of the alternatives which remain on the table after
the elimination of irrelevant alternatives.

In the absence of any predictive power all events we are aware of would be treated as
though they had the the same probability of occurring and all events we are not aware would
be treated as having probability 0. Modeling allows us to make this distribution more realistic.

From a commonsense perspective, this might seem obvious. However, for many modelers,
there is legitimate resistance to the idea that models predict properties of the systems under
consideration in any straightforward way. We will endeavor to show that while modelers are
correct to approach the problem of prediction cautiously, they would be wrong to give up
on predictive power as a criterion for evaluating and comparing models. Our view is that
prediction is an essential component to any non-arbitrary planning and decision making.

There are a number of important complications with respect to prediction. Clearly, for
example, the effectiveness of a prediction is scale-dependent (Israeli and Goldenfeld 2004).
For example, while the geophysicists do not claim to provide accurate predictions concerning
the timing of large earthquakes, they are nevertheless able to predict the broad geographical
areas in which such earthquakes can be expected. This kind of predictability offers little help
to short-term planning (Pielke 2003), but has considerable practical impact in deciding, for
example, where expensive anti-seismic construction methods are necessary. Similarly, while
we accept that we cannot predict the outcome of an individual roulette round, the gambling
industry is built on predictability of its long term global behaviour. Indeed it is so predict-
able that a mismatch between outcomes and prediction serves to alert casinos to potential
cheats.

Prediction is an integral part of any non-arbitrary decision making process. At an organi-
sational level, prediction has a role, implicitly or explicitly, in the formulation of plans and
the assessment of which avenues should be followed. Formulating a plan implies choosing
among potential alternatives and predicting which one is more likely to deliver desired out-
comes. The same applies to the implementation of a plan. The need to carry out a prediction
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of the future behaviour of our environment and the likely outcome of our interaction with
it is so pervasive that it has been proposed as the defining distinction between living and
non-living systems and is implied in much work on information theory and computational
dynamics (Rosen 1885; Crutchfield 1994; Ellison et al. 2009; Poli 2010).

2 A Model of a Complex Problem: Prediction and Retrodiction

Because of the scope of the issues under consideration, in this paper, we will begin by limiting
our discussion to an idealized case where we help ourselves to a number of assumptions.
Let’s assume, for the sake of understanding predictions in computational models that:

(1) Our model represents our understanding of a complex natural process P
(2) We already have a computational model M of P
(3) The model is ‘structural’ in the sense that it is not a purely statistical model. Rather than

modeling simple data correlation, the model represents our understanding of salient
mechanisms in a computationally tractable manner [extension of the discussion to non
structural models can be addressed by following the line of argument in (Suchting
1967)].

In short, we are assuming that the model is a success and that it looks like the kinds of compu-
tational models that feature prominently in contemporary scientific investigation. Obviously,
such an assumption will appear question begging from the perspective of thinkers who are
skeptical of the very possibility of successful computational models. It will not be possible
to answer such total skepticism in this context. Moreover, we do not concern ourselves here
with how the model represents P , we simply assume that it does an good job doing so.

Figure 1 (below) shows the natural process P and our model M of P . At time t0 we collect
some 0 about P . Depending on the nature of the problem we need to address, we may use
M for two purposes. We may want to assess what may happen in the future at time tn. Since
M respects our perception of the ‘arrow of time’ (causes lead to effects), using M in this
fashion is usually called a ‘forward’ model and n. Alternatively, we may wish to assess what
may have happened in the past at time t−n. Since it attempts to reverse the arrow of time, this
use of modeling is often referred to as ‘inverse’ modeling (Parker 1977; −n).

In an ideal case, the retrodiction would be carried out with an inverse model M−1 such
that M−1(out) = in, where in refers to the input and out=M(in) to the output of M , respec-
tively. Unfortunately, inverse models such as M−1 can be written explicitly for only a very
small set of forward models M . This is true not only for closed-form models but also for
purely numerical models. As a result, most inverse engineering and scientific problems need

Fig. 1 “Modelled” process and “Real” process through time
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Fig. 2 Runs of M starting with different initial conditions

to be solved by iterative methods in which M is run with sets of inputs in until a 0 is called
inversion, optimisation, or regression, depending on the discipline (Parker 1977; Tarantola
1987). Here we will call it inverse modeling and will call this procedure MInv.

Assessing the effectiveness of a computer model in predicting or retrodicting can thus
be cast in terms of the reliability of the two processes M (prediction) and MInv (retrodic-
tion). By ‘reliable’, we mean −n|, where |x,y| is some kind of metric of common use and
practical usefulness. For example, |x,y| could be a norm (often L1 or L2 are used), a measure
of correlation or mutual information, or even a subjective evaluation (Takagi 2001).

Let’s begin by considering deterministic models with the help of Figure 2 This figure
shows an 0, and we use this information to parameterize our model M . The ‘real’ process P
proceeds and at time tn n generated by M does not need to be smooth).

In Figure 3, we use the same representation to describe the inverse process M I nv which
allows us to 0| = 0. Of course we cannot expect this match to be exact. The same approxi-
mations (or errors) which 0| �= 0. If M is non linear and ‘complex’, the magnitude of Er and
Ep may vary considerably as a function of, but we have no a priori reason to expect Er < Ep.
This is the crucial message of this work and we will address it again below. At this point, it
is important to emphasize that Er arises from the same process which generates Ep and that
the relative magnitude of Er and Ep cannot be deduced a priori.

Two further problems, which affect any real world modeling exercise, complicate the
inverse modeling MInv:

(a) M I nv does not necessarily have a unique answer
and

(b) MInv can be computationally very expensive.

‘Non uniqueness’ or ‘equifinality’ is the property of a system wherein, under certain con-
ditions, families of input parameters can produce the same model output. In systems which
exhibit non- uniqueness, there are a variety of ways that a system can tend towards a specific
state. Many studies in applied mathematics focus on measuring the level of non uniqueness
or on determining the extent to which non-uniqueness is a mathematical artifact (due to over-
parametrization, inappropriate parameterization or lack of information) or a genuine feature
of the real process (Parker 1977; Tarantola 1987).

Non-uniqueness is a feature of inverse modeling but not of forward modeling, the outcome
of which under ordinary circumstances is deterministic. When needed, non-deterministic
elements in the solution of the forward problem can be obtained only by imposing random
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Fig. 3 Inverse process for M
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Fig. 4 Non-uniqueness and retrodiction

variations to some input parameter. This approach is commonly used to mimic non-deter-
ministic processes (for example by using random choices to model agents’ behavior under
uncertainty) as well as chaotic ones, whose behavior is determined by small variations in
initial conditions.

0| = 0 can be achieved (that is even if the model allows to match the current observations
perfectly), we −n which provide the match (gray shadow in Figure 4).

The previous argument can easily be extended to non-deterministic models, as summa-
rized in Figure 5. As discussed above, this non-deterministic outcome is obtained by using
random perturbation in the input parameters, thereby generating artificial non-uniqueness in
the forward modeling. Notice that, as before, there is no reason to assume that Up is smooth.
The same reasoning 0| adds to the uncertainty resulting from non-uniqueness in Figure 4.
This is represented as Ur in Figure 5. Finally, as we mentioned above, M can be computa-
tionally very expensive. In many real world applications, this implies that M cannot be run
as many times as the iterative process M I nv would require. | and, as a result, potential further
errors in Er.

If we accept that Ep represents the error in prediction and Er the error in retrodiction,
the previous analysis suggests that (a) Er is inextricably related to Ep, (b) there is no reason
to assume that in general Ep > Er and (c) in practice, it is more likely that Er > Ep as a
result of non-uniqueness and the computational effort which may prevent the inverse process
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Fig. 5 The non-deterministic case

M I nv to run to completion. This leads to the unintuitive conclusion according to which, in
the absence of additional information, we should trust a model prediction more than a model
retrodiction.

So, how does this apply to the explanation of past events? Some initial observations can
be drawn from the previous discussion. Above, we assumed that M represents our under-
standing of a complex natural process P and is provided to us. In other works M is the basis
for any explanation of the process which aims at recovering the salient history of the system.
So, arguably, explanation then can be equated to deciding what model, among many, best
describes the process P .

If we then assume that such explanation is not yet agreed upon, we can imagine that
a family of models Mi = [M1, M2, . . . Mn] is available and we need to choose the most
suitable model. The previous reasoning can then be applied by noticing that the mapping
between state spaces at different times t−n, t0, and tn becomes also a function of Mi .

The role of additional information in the choice of model is crucial for the development
and maturation of a modeling project. Additional information may for example tell us which
path among the many available, the system has taken at a time t−n < t−m < t0. This can
constrain the inversion process M I nv by making it both more reliable. Similarly, that infor-
mation may be used to better initialize the forward model M . Whether the prediction or the
retrodiction will benefit more from the introduction of additional information is difficult to
establish a priori.

3 Common Uses of Complex Models

In the previous section we have shown how, in most real world applications, inverse modeling
is in fact iterated forward modeling. However, in practice, forward modeling, often involves
inverse modeling. There are two basic reasons for this interplay. First, even the best struc-
tural model used in predictive work requires some tuning of parameters. By tuning, we mean
finding combinations of parameters which match past observations, theoretical constraints
or mere expectations. In practice any principled process of adjusting parameters will involve
an inverse process of the kind described in the previous section.

Many engineering and scientific problems appear to ask forward or predictive questions
concerning the system of interest. So, for example, we might be interested in whether a flood
will occur under some set of conditions or whether some intervention can stop the next flu
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pandemic. In these cases we are asking what effects some intervention will generate. How-
ever, ideally one important goal of these kinds of simulations is to provide a more general
kind of understanding, such that we can answer questions like:

“what will prevent the next flood?”
or
“what can stop the next pandemic?”

Any progress towards answering questions like these using computational models must
involve inverse methods. Clearly, the kind of mastery we seek with respect to complex
phenomena lies not so much in being able to answer a long list of forward questions. Instead,
it consists in being able to generalize from lists of answers to forward questions in tackling
unspecified future problems. Expert modelers achieve understanding of this kind by reflecting
on mapping relations between input parameters and outputs and by carrying out a sensitiv-
ity analysis of their model based on their experience and presumably via something like an
unconscious inverse exercise. While experience and expertise are important, the accuracy of
a researcher’s deliberations, as we have seen above, depends crucially on the reliability of
the forward model.

Not all learning that results from using computer models needs be so formal. Let’s take an
analogy often employed to explain the role of numerical models in complex processes: the
flight simulator. Complex socio-ecological models, for example, offer decision makers the
same opportunity offered by flight-simulators to trainee pilots: they provide the opportunity
to test policy initiatives in the safe world of virtual simulations. However, it is reasonable to
expect that flight-simulators will provide effective training only in so far as the flight-sim-
ulator simulates well, that is, only in so far the flight-simulator effectively predicts how the
real plane will behave under similar circumstances. We have no reason to believe that a pilot
trained on an inaccurate flight simulation should learn how to handle a real plane in the real
world. Similarly, there is no reason to believe that a decision maker should improve his/her
ability to address a real world using a model which provides poor prediction on how the real
world functions.

Some researchers have emphasized other roles for computational models most common
is some relatively poorly defined notion of “understanding”. However, we as we have argued
here, that the use of computational models for the development of understanding, still depends
on their reliability as predictors.

4 The Conditional Nature of Predictions is a General Feature of Explanation
in the Special Sciences

There is clearly some relationship between the predictive and explanatory roles of compu-
tational models and the improvement in our capacity to exert control either over a natural
process or relative to the natural processes in question. It might be the case that while some
specific natural process is beyond our control, understanding the process permits us to adjust
our behavior in advantageous ways in light of our understanding. Admittedly, this notion
of understanding is not very well-defined. As a way of getting clearer on what we mean by
understanding, it is useful to consider its relationship to explanation. How do we ordinarily
explain events and regularities?

As a way of beginning to answer, consider how we might begin to explain some specific
observation in ordinary life. One way of explaining an event is to reconcile it with a broader
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system of laws or regularities. So for example, if I notice that my neighbor is earnestly
moving a live chicken around his head three times, I am likely to be puzzled by his actions.
The mysterious quality of his action could be (partly) removed when we learn that he is a
member of the Heredi community and that he is performing Kapparot, a traditional ritual
where the believer attempts to transfer his sins to a chicken. This explanation takes the form
of a generalization about the behavior of members of the community, adds some additional
information about the beliefs and desires of the person performing the action, and thereby
serves to reconcile this event with a broader unified picture of people and their behavior.
The strangeness of the isolated event is eliminated (to some extent) by being told of how it
fits with all of our other beliefs about people, their religious practices and their community
affiliations.

Ordinarily, the purpose of explanation in everyday life is simply to reconcile some event or
regularity within a broader framework of understanding. So, for example, after hearing that
my neighbor is performing Kapparot, I will have an improved understanding of his actions.
While we would probably still might admit to not really understanding what he is up to, for
the practical purposes of our immediate neighborly relationship, we have a sufficient level
of understanding.

Thus, most ordinary explanations are dependent for their success on meeting the needs of
the audience in question. So for example, as Putnam (1982) explained, when we are interested
in an explanation of something like a forest fire, there are an infinite number of facts which
are irrelevant to our interests in seeking an explanation. We could imagine, visitors from outer
space, observing the forest fire, and explaining to their conspecifics that the planet Earth is
subject to forest fires because its atmosphere is dangerously saturated with oxygen. Human
forest fire investigators on Earth would be unlikely to be applauded if their explanation of
the fire was simply that the atmosphere at the time held sufficient levels of oxygen to sus-
tain combustion. To at least some extent, our purposes, in providing explanation, shape the
judgment as to whether some explanation is successful or not. We can call this the audience
relativity factor of explanation.

In ordinary explanations, we attempt to reconcile some event or regularity with some
accepted set of generalizations. Let’s contrast this audience-relative feature of ordinary expla-
nation with an idealized conception of scientific law. In simple terms, scientific laws serve
as generalizations which take the form of conditionals:

For all x if x is an F then x is a G.
In ordinary social scientific explanation, such laws do not hold strictly. Why does Mary

eat fish on Fridays? All Catholics eat fish on Friday, Mary is a Catholic, so Mary eats Fish on
Fridays. The generalization that serves to explain Mary’s behavior in an analogous manner
as the Kapparot case above, is not strictly true insofar as it is not exceptionless. It is certainly
nowhere near meeting the standards that one would use for measuring the success of a physi-
cal law. Nevertheless, it is a satisfying explanation for certain purposes and for certain people.
Specifically, it would be satisfying to people with the right kinds of background knowledge
about people, religions, food, days of the week, and the like. By contrast, idealized, maxi-
mally general physical laws hold without exception. Such laws can be said to answer “why”
questions independently of agent interests and background knowledge. So, in the case of
physical laws, we can say that one of the goals of physics is for audience relativity to drop
out as a relevant factor in determining the legitimacy of an explanation. Some philosophers
of science, notably Nancy Cartwright, have denied that such laws really can be provided by
physics and claim instead that all laws are subject to what are known as ceteris paribus or
‘all other things being equal’ clauses (Cartwright 1983).
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In the case of computational modeling, there can be no presumption of maximal gener-
ality. Instead, as we have discussed elsewhere (Boschetti et al. 2010) computational models
always involve conditional prediction. As we can now see, this is not a unique feature of
computational modeling. All sciences which do not claim maximal generality face the need
to cope with conditions or ceteris paribus clauses.

The explanatory power of computational models will be judged relative to their capacity
to assist us in the intervening in, or perhaps preparing for, the natural processes in question,
under the conditions stipulated by the modeler. The explanatory power of these models is
judged in relation to their capacity to satisfy our purposes.

This is not an anti-realist account of explanation. In fact, we assume, that the most impor-
tant criterion for deciding whether or not we actually have explanation provided by compu-
tational models is the capacity of those models to provide predictions. The predictive power
of these models is the sole test of their adequacy and is the sole marker of their epistemic
value.
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