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1 Introduction

The proliferation and variety of technologies in the so-called Internet of things
(IoT) raises concerns with respect to security and resilience. Given the introduction
of new attack surfaces and their associated vulnerabilities, IoT presents worrying
new security threats to critical and often life-sustaining systems (Hassija et al.,
2019). Because of the complexity of IoT systems, understanding the nature of these
threats is not straightforward. For example, at the level of network analysis, the
rapid growth of IoT has complicated matters in a variety of ways. IoT has changed
edge networks by dramatically increasing the number of nodes and by introducing
a variety of types of services and functions that are exposed to disruption. To
date, this new context has proven difficult to tractably model. In this article,
we examine the relatively simple context of smart home technologies in order to
present strategies for thinking about improving the resilience of IoT systems more
generally.

Diverse technologies, each with their own distinctive sets of vulnerabilities, sup-
port the functional requirements of so-called smart home and smart building sys-
tems. These include IEEE 802.11 and 802.3 for high-bit-rate and interactive appli-
cations, ZigBee (ZigBee Alliance, 2008), Bluetooth (Bluetooth SIG, 2015), (Blue-
tooth Special Interest Group, 2016) and Z-wave (Sigma Design, 2018), (N. T.
Johansen (editor), 2017) for low-energy consumption and low bit rate. Other very-
low bit rate and long-range technologies such as LoRaWAN (LoRa Alliance, 2016),
Sigfox (Moan, 2017), (Zuniga and Ponsard, 2016), and NB-IoT (GSMA, 2016)
contribute to services requiring very low-energy consumption such as structure
monitoring, leak management and the like. These technologies feature a variety
of network topologies, ranging from star to mesh structures. Combining these
technologies can result in the emergence of complex network properties even in a
relatively small domain such as a smart home or building (Symons et al., 2007).

A typical smart home system is a combination of various sensors, actuators,
controllers, control networks, and gateways (Paetz, 2018). Sensors generate data
and send them to the controllers through control networks such as ZigBee or
Z-Wave. Devices in the network containing actuators and sensors are managed
through the control networks while they are connected to the gateways that
provide interconnection with other communication networks.Though this is the
generic structure of a smart home system, in practice a range of distinct network
technologies are used. The number of distinct network technologies with distinct
topological features along with the overall network size contributes to the com-
plexity of the system as a whole. Furthermore, each technology has unique physical
and logical characteristics including the frequency bands, the network initiation
process, the network components, the number of supported nodes, availability, and
security features. With each of these features comes the potential for exploitable
vulnerabilities.

While there is an understandable and justified concern that the heterogene-
ity of IoT technologies expands the available attack surface for adversaries and
makes systems as a whole increasingly fragile, technological diversity need not be
straightforwardly bad news for security and resilience. As we show in this paper,
the heterogeneity of the technologies in a system can potentially improve resilience
given suitable design principles. For example, since important aspects of each net-
work technology are sometimes self-contained, any disruption to the operation of
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the network technologies renders only that individual network inaccessible. Fur-
thermore, to take a simple example, when devices such as laptops and cellphones
support more than one network technology, they can operate in many networks at
the same time. Most obviously, this redundancy increases the probability that the
overall system will be available and consequently the resilience of the system as
a whole increases. These are simple examples, but they speak to a more general
point: Understanding how diverse networks and technologies interact is critical to
designing system-wide resilience.

A first step is to provide a general and abstract approach to tackling the prob-
lem that can be applied to a variety of contexts. Our goal is to provide general
principles for helping to design resilience into complex and technologically diverse
systems (Pipa and Symons, 2019). To that end, in this paper, we present an
abstract home network model for smart home architectures and perform a graph-
theoretic analysis on various instances of this model. Our goal here is to demon-
strate in simple terms, how to approach to designing resilient multi-technology
systems. The paper is organized as follows. First, we review some of the available
IoT models. In Section 3, we present our abstract smart home model to show the
interaction of distinct network technologies. Then we generate instances of the
model. In Section 4, we perform a graph-theoretic analysis on one instance of the
smart home and compare it with two baseline models with star and mesh topolo-
gies. In Section 5, we analyze various instances of smart home models to explore
the overall behavior of the system that results from the addition of devices and
network technologies. So, for example, studying the addition of cellphones to the
network allows us to consider the extent to which these additional devices provide
additional redundancy and resilience. We conduct similar experiments involving
the addition of network technologies in order to understand the changes that re-
sult in the behavior of the system as a whole. Finally, we offer some concluding
comments and some plans for future work in Section 6.

2 Background and related work

IoT is already integral to a range of important endeavors, including industrial
production and manufacturing, critical infrastructure, military applications, cities,
and homes. Several models have been introduced to represent the IoT ecosystem;
however, most of these models lack important details about the relationship be-
tween the structure and function of the multi-technology networks in systems such
as smart homes and cities. Existing work has provided useful maps and helpful
distinctions, but it does not permit effective graph theoretic analysis for reasons
we will explain, nor does it facilitate the kind of design that increases resilience in
these systems.

The IEEE reference model (Minerva et al., 2015) shows IoT systems in three
functional layers including sensing, network and data communications, and ap-
plications. The ITU Y.2060 model (ITU, 2012) shows the integration of “things”
to communication networks. The Internet Engineering Task Force (IETF) refer-
ence model concentrate on factors for enabling IoT communications. The National
Institute of Standards and Technology (NIST) considers an IoT system as a cyber-
physical system (CPS) technology to connect smart devices (Boutin, 2014). Cisco
defines the concept of fog computing and adds it to its seven-layer IoT model (Lake
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et al., 2012). Other specialized models as part of the IoT systems have been in-
troduced for mobile (Fernando et al., 2013; Dinh et al., 2013), edge (Vaquero
and Rodero-Merino, 2014), and fog computing (OpenFog Consortium Architec-
ture Working Group, 2017).

In order to improve the resilience of these networks it will be helpful to develop
models focusing on the distinctive structural properties of the networks involved
in such systems. In previous work we have focused particularly on the topological
features of networks. We have previously introduced a reference model for the
interaction of technologies associated with the kinds of services that are likely be
typical in smart homes in the near future (Modarresi and Sterbenz, 2018). We
obtain our connectivity graph by converting our reference model to a graph model.
Our connectivity graph led us to our technology interdependence graph where we
can represent the role of a high-bit-rate technology such as WLAN serving as the
smart home backbone network. As explained below, other network technologies
connect to this backbone in ways that we can model.

3 Smart home model

We introduce our abstract smart home model in Part 3.1. Then, we present our
home network graph representation model produced by Python NetworkX (Net-
workX developers, 2018) for the smart home network in Part 3.2. At this stage,
the goal is simply to model a typical smart home network architecture in order to
provide a platform for exploring ways to improve its resilience.

3.1 Abstract smart home modeling

A first step toward creating a graph model that can be used for simulation-based
analysis (Modarresi and Symons, 2020) is to create an abstract representation
of the smart-home network. The reason for abstracting from the details of par-
ticular networks is to achieve the kind of generalizations that apply to a wide
range of distinct cases. At the same time, it is important to include some of the
functionally relevant features of the smart home context, most importantly it is
important to capture the ways in which diverse technologies interact. A scientifi-
cally useful model will be one that is abstract enough to provide general insights,
but that also recognizes the implications of technological heterogeneity and inter-
action. Our smart home abstract model is depicted in Figure 1. This shows the
architecture and high-level structure consisting of the home backbone with other
attached home edge network technologies introduced below. The home backbone
is typically a mix of wired Ethernet and wireless 802.11 technologies. However,
notice that at the network layer it appears as a single IP-addressable network.
In addition to end systems such as laptops (not shown in this figure), the home
backbone provides connectivity to various other home edge network technologies,
with disparate topology, protocols, and addressing. These edge technologies gen-
erally interconnect only through gateways to the home backbone, resulting in a
star topology of networks, of which two are shown in Figure 1.

Traditionally, homes have been connected to the Global Internet for user access
to Web browsing and email. More recently, many smart home services use connec-
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Fig. 1: Smart home abstract model

tivity for remote access, e.g. for access to security systems or for controlling lighting
and heating when residents are away from home. While it is beyond the scope of
the current paper to address in detail, it is worth noting that many IoT devices
use cloud-based services, significantly increasing the available attack surface, while
providing poor resilience for those systems given that they often cannot operate
when disconnected from the Internet. While connecting to the Internet via an
RBB (residential broadband) link such as DSL or HFC (hybrid fiber coaxial) has
been the norm, increasingly LTE mobile networks (evolving to 4G LTE-advanced
and 5G) are providing Internet access to homes. Additional connectivity to the In-
ternet obviously enables the increased redundancy of a biconnected graph. It also
provides diversity with respect to the communication medium such that wireless
can be used if a cable is damaged, and wired if the wireless channel is disrupted
by, for example, heavy precipitation or jamming.

3.2 Technologies in smart home model

As presented in Figure 2, high-bit-rate LAN technologies including Ethernet,
802.11, and 802.11s are used as the home backbone. While wireless LANs are
the dominant technology forming the home backbone, they may suffer interfer-
ence in a dense urban environment and can be jammed to disrupt home services
and operation. Each LAN technology usually supports a particular topology. IEEE
802.11 in the infrastructure mode uses a star topology while 802.11s uses a mesh
topology. The range extension capability of 802.11s due to the mesh topology
makes it preferable to basic 802.11 for the home backbone LAN. Furthermore,
switched Ethernet can construct physical mesh with a logical spanning tree over-
lay to avoid loops in the network. Considering network resilience, a mesh network
with k-connectivity (a connected graph with k separate path between each node
pair) of k ≥ 2 should be constructed for the home backbone LAN. We consider
k-connectivity of k = 2 for brevity of the model in the backbone structure while
k = 2 offers minimum network resilience at the backbone.

The mesh nodes comprise a mesh basic service set (MBSS). MBSS can be
connected to an infrastructure BSS through a distribution system by a mesh gate-
way. Therefore, the infrastructure BSS supports other typical and high-speed IP
services constructing a star topology around each mesh station equipped with an
access point. Although the access points in 802.11 represent a critical point of
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Fig. 2: Connectivity graph of the home network model

failure of this structure, mobile nodes can connect to other access points during
failure of their native access point. On the other hand, implementing some of the
mesh edges with Ethernet improves resilience more through the heterogeneity of
the technologies and diversity of the protocol mechanisms.

Other network technologies are connected to the backbone through their gate-
ways. Current technologies, including ZigBee and Z-Wave, can construct mesh
topology. Other technologies including Bluetooth operate via a star topology. No-
tice also that Bluetooth can construct mesh topology by changing the role of a
slave node to a master node and vice versa.

Most of the low-bit-rate technologies such as ZigBee support a mesh topology.
However, the topology of such networks also depends on the density of the nodes in
the network, the average distance among nodes, and the specialized nodes that are
utilized by a particular technology such as coordinators and routers. The topology
may be a star when all nodes are in the range of the coordinator or master node but
far from each other, linear when the network coverage is extended, mesh when some
nodes are in the range of the other nodes, or a combination of these options. In
most low-bit-rate technologies including ZigBee and Z-Wave the battery-operated
nodes do not participate in the routing or forwarding processes; therefore they
are usually the endpoints of the network graph. We construct this part of the
network graph by the caveman graph algorithm with Python networkX library,
which permits us to generate a particular number of cliques with a specific size.
This structure can emulate a controlled mesh network. We process the produced
graph from caveman (Kang and Faloutsos, 2011) algorithm for the number of
connected components. We eliminate those nodes that are not part of the largest
component in the graph to generate a graph with one connected component. Since
both ZigBee and Z-Wave generate a mesh topology in an optimal condition, we
consider one mesh network for brevity as a sample of these technologies in our
model; although, many such networks with more complexity and number of nodes
can exist simultaneously in a larger network. For instance, a simple network can
have one particular network technology while a multi-story building may have
various types of networks with more nodes. Since these network technologies are



Resilience and Technological Diversity in Smart Homes. 7

low bit rates and self-contained, any structural changes or failure will have minimal
or no effect on the home backbone LAN. Therefore, these networks can be studied
separately. Notice that an effective network analysis involves taking account of the
functional characteristics of the technology involved here.

Other high-bit-rate technologies, including 4G/LTE/5G, can be integrated to
the network to increase the path diversity to the Internet. When the network is in
the normal operation, a cellphone can join the network through its 802.11 interface
and act as a wireless station. However, during a WAN failure, a tethered cellphone
can operate as an access point to connect the internal network to the Internet
through a different path.

LPWAN technologies including NB-IoT and LoRaWAN can also be utilized in
a smart home network. However, we do not use them in our home network graph
model; since, such technologies are part of larger networks which are mainly outside
of the smart home network. Many technologies in this category, including NB-IoT,
LoRaWAN, and Sigfox, have a star or star of star topologies similar to the topology
in 4G/LTE/5G technologies. In all of these technologies, the center point of the
star topology is usually outside of the home network. Such networks are connected
to the home network at the ISP level or even an AS level. Hence, any failure in the
lower levels of the network hierarchy will not affect both networks simultaneously;
unless the failure happens at the same or higher levels of the hierarchy in which
the two networks are connected. We represent the point of connection between the
two networks with the Internet node in our home network graph model illustrated
in Figure 2 assuming that the two ISPs are reachable with one hop to simplify the
structural complexity of the Internet.

4 Graph-theoretic representation and analysis

The analysis of our model uses a formal graph representation. We calculate various
graph analysis metrics and compare with baseline home network architectures,
including star and mesh, in order to study properties of our model. We perform
a similar analysis on our technology interdependence graph. Here again, our goal
is to study the logical representation of the typical technologies employed in a
smart home with being unnecessarily any constrained by the details of a particular
network and its associated components.

4.1 Home network model analysis

Given our home network model, we define an edge-colored graph Gconn =
(Vc, Ec, C, χ) as the connectivity graph illustrated in Figure 2, such that vi ∈ Vc
is a node with a transceiver tik of a particular technology and en ∈ Ec is a
communication link between two adjacent nodes vi and vj . Furthermore, C is a
set of colors equivalent to the number of employed technologies in the graph and
χ : Ec → C is a function to assign a color to each edge. More precisely, we can
define Ec as Ec = {((vi, vj) ∈ Vc × Vc, ci)|χ(vi, vj) = ci}.

We start this analysis by evaluating two baseline topologies: the star and mesh
backbones. We consider a star wireless LAN implemented with IEEE 802.11 con-
nected to the Internet by an Ethernet link through a DSL or HFC cable link,
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typical of many traditional home networks. We then enhance the star network to
incorporate a full-mesh backbone as would occur by replacing a single 802.11 ac-
cess point with three meshed 802.11s nodes (AP1, AP2, AP3). Next, we consider
our home network graph (Figure 2) and compare it with the other two baseline
topologies. Finally, we calculate the graph metrics for our home network during
a failure on the Internet access link (NID ↔ ISP1 ) that fails over to the backup
access path through Phone1, illustrated in Figure 3. The number of 802.11 wire-
less workstations are the same in both the baseline models and the home network
model. However, the home network model has extra nodes representing the net-
work technologies connected to the home backbone.

We then consider the following failover mechanism for our centrality analysis.
If the Internet access link between NID and ISP1 in our home network graph fails,
the home backbone LAN and consequently the rest of the network is disconnected
from the Internet. While the home network is still locally operational, the cloud
services are inaccessible. Though Phone1 can provide Internet access through the
LTE network in the tethering mode, this process may partition the home network.
This is due to the fact that a mesh node (an 802.11s mesh station) cannot connect
to an 802.11 access point (a cellphone in the tethering mode) directly. Moreover,
two access points cannot simply connect to each other without a distribution
system. As a result, the mesh network would not have access to the Internet.
Two possible options for resolving this Internet access disruption in the mesh
nodes are either using Wi-Fi Direct (Wi-Fi Alliance, 2018) on the mesh nodes and
the cellphone or cellphones equiped with 802.11s. Wi-Fi Direct provides a one-
hop connection between two nodes without a physical access point, while 802.11s
support multi-hop connections. During the failure, other network technologies can
connect to the second path if their gateways have 802.11 interfaces. We do not
consider these two options in our measurement at this point.
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Fig. 3: Connectivity graph of the backup topology

We examine various graph node and edge centrality metrics for this analysis,
and report the minimum, maximum, and mean values in Table 1. Graph centrality
metrics can be classified into three groups: distance, connectivity, and spectra
classes (Hernández and Van Mieghem, 2011). Distance metric measurements are



Resilience and Technological Diversity in Smart Homes. 9

based on the shortest path and the number of hop count over the shortest path. The
node-degree values are the main consideration for connectivity-based centrality
metrics. Finally, eigenvalues and eigenvectors are the foundational concepts for
the spectra metric measurements. We emphasize that our list of centrality metrics
is not comprehensive and we consider some of the relative metrics to our model
from each category. The aim is to find appropriate centrality metrics from these
groups to describe our multi-technology model. One should note that the thickness
of each edge in Figures 2 and 3 represent the value of edge-betweenness centrality
(number of traversing shortest paths) computed by Cytoscape (Shannon et al.,
2003). Each specific edge color shows a particular technology according to our
graph model definition.

In the home network graph and consequently the backup graph, various net-
work technologies interconnect, which differ in a number of aspects including
topology, node responsibility, link data rate, and failover policy. Node and edge
attributes may be employed to identify those characteristics, but not all can be
simply represented as edge weights. Two possible options are introducing new
role-based centrality metrics, or altering existing centrality metrics to consider a
particular attribute in the calculation. For instance, if a critical node (such as
Bluetooth or Zigbee/802.15.4 controller) is located at the edge of network technol-
ogy, its node degree or betweenness can be significantly increased beyond the value
computed from the graph structure to reflect its importance in network operation.

4.1.1 Distance-based centrality metrics

We examine diameter, eccentricity, closeness, betweenness, and stress from this
group in our analysis.

The network diameter is a metric that represents the minimum number of hops
to connect the farthest pair of nodes in a particular network. Regarding the graphs
under study, the star topology has the shortest diameter among baseline models.
The mesh network integrated with an access point on each mesh node has the next
longest diameter. If the number of mesh nodes increases, a one-hop distance can
be maintained as long as a complete graph is constructed among the mesh nodes.

During Internet access link failure, the backbone component is partitioned;
therefore, the diameter value of the larger component decreases, affecting the
value of metrics that depend on the shortest path metrics. However, the short-
ened diameter, in this case, may not significantly change the delay; because, one
high-speed component of the network has failed, and network technologies with
low-speed connectivity remain intact. Therefore, diameter alone is not an adequate
measurement in a multi-technology network. It only provides an overall view of
the network size.

Eccentricity centrality measures the longest of all shortest path from each ver-
tex vi to all other vertices to capture the reachability of vertex vi. The higher
value shows the proximity of node vi to other nodes. Eccentricity decreases from
the star topology to our home network graph due to the addition of network
technologies and consequently the increase of the network diameter. However, the
higher eccentricity with relatively close values of the backbone nodes shows that
other technology networks are evenly installed around the backbone. Therefore,
minimizing the maximum length from backbone nodes should be a consideration
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in the design of smart home and other IoT systems. We provide the eccentricity
results in Table 1.

Closeness centrality is a measure of the average shortest path for any node
vi to other nodes in a network. Closeness centrality deals with the minimum-
sum reachability problem. A network with a larger mean quantity of closeness
centrality has the smaller average of the shortest path among all nodes showing
that the nodes are more concentrated toward the center of the network.

The center node of the star topology has the maximum closeness centrality
value. When a network is expanded, the node’s closeness centrality values de-
crease due to longer paths as observed in our home network graph. In the backup
topology, Phone1 has the highest closeness value. In addition, the overall closeness
values for all nodes increase. Since the network gets shorter because of losing the
backbone nodes. A node with high closeness value and high degree centrality has
an exceptional position to disseminate information. However, such nodes in com-
munication networks are vulnerable in targeted attacks. Therefore, distributing
closeness among all nodes are more favorable in communication networks, which
makes our home network graph more resilient than other topologies.

Edge betweenness centrality is an edge centrality metric measuring the fraction
of the number of the shortest path between every pair of nodes vi and vj that
passes over a particular edge ek. An edge with a high value of the edge between-
ness connecting two low degree nodes at both ends indicates a bridge in which it
connects two parts of a network. Failure of such edges may partition a network.

In our home network graph, all edges that connect a gateway to an access
point have a high edge betweenness centrality values. Generally speaking, all edges
connecting part of a network with a different technology to another have a high
edge betweenness centrality value constructing a bridge between two parts of the
network. Disruption of such edges partitions a network technology from the rest
of the network. Therefore, such links should be considered critical links; although,
they do not have the maximum edge betweenness centrality in the network. The
same condition is observed between Phone1 and EPC in the backup topology in
which the home network is connected to the LTE network during the failure. The
thickness of the edges in Figures 2 and 3 illustrate such edges. Adding diverse
paths in proper places either through the same or different technology decreases
edge betweenness centrality on bridges improving the network resilience through
increasing technology heterogeneity. This is particularly important as a general
principle for IoT design.

For instance, given a particular gateway, two wired and wireless interfaces may
decrease the edge betweenness value of the connected edge to the gateway. The
limitation is easily observed during failure since the only high speed and long range
available technology is LTE. In a smart city with wireless access connectivity, one
might have another path to the Internet with a restriction; because all nodes should
connect to the citywide wireless network at relatively short ranges.

Although edge betweenness centrality may identify important edges that con-
nect technology variants to the backbone network, it is not an appropriate measure
for recognizing critical edges connecting important edge nodes. All edges connect-
ing edge nodes to other nodes receive a low value with this metric while such nodes
including sensors may gather critical data (think, for example, of a smoke detector
or similar life-critical sensor). Here we see an obvious mismatch between graph
theoretic measures and other dimensions of importance. One possible solution to
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alleviate the criticality of such nodes would be to install redundant nodes in the
same area, thereby increasing system cost. Another solution is to use a node sup-
porting the capacity of different technologies to participate via a range of distinct
network technologies. This would involve sacrifices in energy consumption. Our
approach shows how one might weigh the various features of trade-offs like these.
However, as noted throughout our discussion, graph theoretic measures alone can-
not settle the question of the amount of resources to expend on maintaining the
functionality of particular nodes in the network. Just how critical a particular node
is judged to be is a matter determined by other means.

Node betweenness centrality, a node centrality metric, measures the fraction of
the number of shortest paths between every two nodes vi and vj that lies on a
particular node vk. This value identifies the importance of a particular node in
communication among other nodes. We provide the results of this metric for all
models in Table 1.

Stress centrality measures the amount of communication that passes through
an individual vertex vi. It is measured based on the number of the shortest paths
through a node vi. This metric assumes that all the edges in the network have the
same bandwidth and that all traffic goes through the shortest paths. Therefore, it
does not provide an accurate result in a multi-technology network when each group
of links has different bandwidth. For instance, AP1 connected to NID handles
both the Internet traffic and part of the local traffic while it has a lower value
than AP2 with more edges. Although assigning weights to edges can increase the
accuracy of the measurement, weight normalization should also be considered in
a multi-technology network. Here, it is important to note that a saturated link in
a low-bit-rate technology has the same effect for that particular technology as the
corresponding link in a high-bit-rate technology.

4.1.2 Connectivity-based centrality metrics

We analyze degree centrality, neighborhood connectivity, and k-edge connected met-
rics from this group.

Degree centrality in the network is a measure of the importance of a node with
respect to how well-connected it is. A higher degree for a particular node in a
communications network suggests that more nodes rely on it for their communica-
tion. A node with high degree centrality in a communication network is a potential
vulnerability in targeted attacks.

The center point of a star topology has the maximum possible value for degree
centrality (n− 1 where n is the number of vertices), which makes it the most vul-
nerable node to any attack or failure. In a mesh topology, the WLAN backbone is
divided among mesh nodes, decreasing degree centrality values and, consequently,
distributing the effect of any failure or attack. We observe the same effect in the
backbone network of our home graph since it has a similar architecture. Although
a node failure with high degree centrality in the home backbone LAN can disrupt
communication, failure of a gateway, even with lower degree centrality, in a star or
mesh network technology can disconnect the entire associated network technology,
which may support critical end nodes. Therefore, focusing on the degree centrality
value alone cannot identify the crucial components of a multi-technology network.

Neighborhood connectivity measures the average number of neighbors of all
vi’s neighbors (Maslov and Sneppen, 2002; Jalili et al., 2015). The neighborhood
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connectivity of node vi is small if vi has neighbors with low-degree centrality. In
contrast, nodes with low degree centrality connected to the neighbors with high-
degree centrality have high value. It shows the capability of any particular node
to communicate with other non-neighbor nodes. Therefore, all nodes at the cen-
ter of a star topology have a low neighborhood connectivity value. Although this
metric cannot consider a node criticality value and does not provide a direct con-
nectivity measurement, it can identify a proper indication for the connectivity of
the edge nodes. Since the edge nodes in a low-bit-rate and low-energy consump-
tion technologies usually connect to other nodes with a single link, neighborhood
connectivity can indicate the well-connectivity of an edge node if the first hop is
intact.

k-edge connected, or k-connected, graph G is a connected graph with the max-
imum number of edges | X | where X ⊆ E and | X |< k such that subgraph
G′ = (V,E \X) is still connected. k-edge connected implies that k separate paths
exist between each node pair in G such that removing k edges partitions G. In
k-edge connected graph G, it is required that k ≤ δ(G) where δ(G) is the minimum
degree of vi ∈ V (Koschützki et al., 2005), (Wikipedia, 2018). k-vertex connected
graph is defined similarly.

Given the definition of k-edge connectness, neither of the models under study
is k-connected; however, subgraph G′ = (V ′, E′) where V ′ = {AP1, AP2, AP3}
is bi-connected (k-connected where k = 2) makes the mesh baseline model and
consequently our home backbone network resilient to a single link failure.

4.1.3 Spectra centrality metrics

We examine eigenvector centrality and Katz centrality from this group.

Eigenvector centrality is an extension of degree centrality that considers the im-
portance of a node as its number of connections to the other important nodes (New-
man, 2010). Although this metric can identify an important node based on its
number of connections in a homogeneous network, it cannot recognize such nodes
in a multi-technology network. This is especially the case for nodes represent-
ing battery-operated devices which have limited capability to establish multiple
connections.

Katz centrality is an extension of eigenvector centrality. Similar to eigenvector
centrality, the importance of a node vi depends on the number of direct neighbors,
and neighbors of neighbors. However, the effect of neighbors of neighbors over the
Katz centrality of vi decreases when the distance from vi increases. Katz centrality
considers length of a walk between two vertices vi and a neighbor vj , and the
effect of vj over vi (Koschützki et al., 2005), (Newman, 2010). Katz centrality can
consider nodes with various importance in the measurement. Assigning a proper
critical value to each node can provide a result considering the importance of
nodes. We assign a high critical value to all access points and gateways in the
models under study. A medium critical value is assigned to important nodes and
sensors such as smoke detectors and routers in a particular network technology. We
assign the lowest value to other nodes. In contrast to other metrics, Katz assigns
proper centrality values to the edge nodes, if they are important. We show the
overall centrality results in Table 1.
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Fig. 4: Technology interdependence graph centrality metrics

4.2 Technology interdependence model analysis

Our technology interdependence graph is the result of a one-mode projection over
the incidence matrix of the bipartite node-technology smart home connectivity
graph (Modarresi and Sterbenz, 2018). The one-mode projection finds adjacency
between nodes based-on their connectivity to another group of nodes. This graph
illustrates the relationship among technologies in a typical smart home. However,
the high-level representation of this graph hides the details of particular compo-
nents in the network technologies and shows the relationship among technologies
in the overall network structure. Due to the simplicity of this graph, the central-
ity metrics for the graph analysis provide especially intuitive results. We perform
the same analysis as we provide in Subsection 4.1 and add the results to the last
column of Table 1. We also interpret the results of some of the important metrics
and refer the readers to Table 1 for brevity.

Figure 4a illustrates the result of the edge betweenness of our technology in-
terdependence graph. The thickness of the edges represents the level of between-
ness. Both short-range technologies used in the home network graph, ZigBee and
Bluetooth, have equal edge betweenness values. It shows the contribution of each
network technology to the overall connectivity of the network without considering
how nodes in a network are connected or how many critical nodes there are.To take
a simple example, if a cellphone with a Bluetooth interface joins the Bluetooth
network (not shown in the figure) the k-connectivity of the Bluetooth network
increases to 2 making it more resilient to the failure of technologies. If ZigBee
technology can be integrated with more devices such as cellphones or laptops, we
can expect the same resilient improvement for ZigBee.

In Figure 4b the size of each node represents the value of node betweenness
which can be interpreted as the importance of the technologies for the overall
communication in the graph. As discussed, WLAN is the crucial technology in the
smart home network connecting other technologies together. Furthermore, any
disruption to the WLAN network partitions the home network into multiple com-
ponents. Therefore, in order to improve the network resilience protecting WLAN
in various ways such as increasing k-connectivity, enforcing higher security, and
using dual-band connectivity would be essential tasks in the smart home improve-
ment. One should note that losing any non-IP network technology does not have
an effect on the operation of the home backbone. However, having a critical node
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Table 1: The graph metrics for the various topologies

Model
Graph centrality metrics star mesh home backup technology

Diameter value 4 5 8 8 3

Shortest path
min 1.16 1.71 2.08 1.72 1.67
mean 2.16 2.66 3.48 3.09 1.72
max 3.67 4.33 5.19 5.22 2.00

Eccentricity
min 0.25 0.20 0.13 0.13 0.33
mean 0.27 0.23 0.17 0.18 0.43
max 0.50 0.33 0.25 0.25 0.5

Closeness
min 0.27 0.23 0.19 0.19 0.5
mean 0.48 0.39 0.30 0.34 0.6
max 0.86 0.58 0.48 0.58 0.86

Edge betweenness
min 36 42 8 8 4
mean 41.11 55.91 126.73 96.18 9
max 96 114 496 400 12

Node betweenness
min 0 0 0 0 0
mean 0.07 0.08 0.07 0.07 0.14
max 0.98 0.57 0.68 0.91 0.7

Stress
min 0 0 0 0 0
mean 20.95 34.91 98.26 67.03 6
max 300 238 946 904 26

Degree
min 1 1 1 1 1
mean 1.89 2 2.16 2.06 2.29
max 16 9 11 18 5

Neighborhood
connectivity

min 1.06 1.50 2 1.44 1.8
mean 13.35 6.60 5.76 10.16 3.54
max 16 9 11 18 5

Eigenvector centrality
min 0.013 0.01 0.006 0.002 0.22
mean 0.19 0.17 0.12 0.13 0.36
max 0.71 0.53 0.56 0.69 0.59

Katz centrality
min 0.08 0.08 0.08 0.08 0.33
mean 0.16 0.16 0.14 0.16 0.38
max 0.59 0.38 0.37 0.49 0.46

in the disrupted network technology, such as a smoke detector, may increase the
danger to the home residents. Therefore, as discussed above, any node judged to
be critical could equipped with multiple technologies according to their level of
importance.

Figure 4c illustrates the node closeness centrality value. The figure shows that
802.11 has the smallest average shortest path to other technologies. This result
can confirm that 802.11 is at the center of the technology network.

5 Smart Home Topological Analysis

As shown is Section 3, Smart home models are relatively small networks with
complex interactions caused by the presence of diverse network technologies. If
one fails to consider the functionality of nodes one generates misleading character-
izations of network properties (Modarresi and Symons, 2019b). This is critically
important when we are attempting to determine the vulnerability of these net-
works. However, the kind of topological analysis of smart home networks that we
conduct, provides valuable insight into the vulnerabilities of such networks. In this
section, we analyze the topological structure of various smart home networks.

As mentioned, deploying different network technologies provides path redun-
dancy and diversity to the Internet resulting in improving network resilience. In
this section, we analyze how adding extra cellphones with 4G/LTE/5G and WiFi
technologies can affect the topological structure of the smart home models. This
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analysis is performed over many randomly generated smart home models with a
different number of nodes in their backbone, resulting in networks of various sizes.

In Section 5.1, we explain our framework to generate the variants of smart
home networks to perform our study. In Section 5.2, we analyze the generated
smart home instances with conventional centrality metrics. We inspect the effect
of size, the number of technology networks connected to the backbone, and the
number of cellphones to understand the overall topological structure of a smart
home network. In other words, we would like to examine how several technologies
incorporated into various nodes such as cellphones that improve path redundancy
and technological diversity affect the smart home models and how conventional
centrality metrics can capture such changes in the networks.

5.1 A Framework for Constructing Smart Home Variants

In this section, we explain our method for constructing randomly generated smart
home instances corresponding with the smart home abstract model proposed in
Section 3.1. This approach can be applied generally, for example to situations
where one needed to randomly generate instances of larger or more complex IoT
contexts such as smart cities. We use the instances generated by this framework
for further analysis of the topological structure of the smart home models. Each
instance follows the same concepts, as explained in Section 3.1, with a backbone
for each model. Then, the network technologies are connected to the backbone.
The smart home network is connected to the Internet with RBB and 4G/LTE/5G
technologies to provide diverse paths to the Internet. We construct smart home
models with varying numbers of integrated access points for the backbones. We
consider three to six integrated access points for the backbones. After constructing
the backbones, we connect network technologies to the backbone for two groups of
experiments. In the first group, we add one star- (representing Bluetooth networks)
and one mesh- (representing Zigbee/Z-Wave networks) networks to the backbones.
In the second group, we connect two star and two mesh network technologies to
each backbone. Each generated instance is integrated with one to three cellphones
to provide redundant network access to the Internet.

5.1.1 Backbone structures

Three integrated access points can construct only two different backbones, linear
and complete graphs. However, when the number of integrated access points in-
creases, the possible number of backbones increases accordingly. The maximum
number of edges in a network obtains when a node vi connects to n − 1 other
nodes where n is the total number of nodes in graph G resulting in a complete
graph with graph efficiency equal to 1. The efficiency between node vi and vj is
the multiplicative inverse of the shortest path distance between vi and vj (Latora
and Marchiori, 2001).

In order to generate a controlled environment, we construct 25 different back-
bones manually in a way that we consider linear, partially completed, and bi-
connected networks. For each backbone with n nodes, we use the backbone topolo-
gies with n− 1 nodes and add one extra node. This extra node contributes to the
overall backbone topologies in a way that we can generate different range topologies
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from linear to partially completed graph. Figures 5 and 6 illustrate two samples
of our smart home instances with three and six nodes in their backbones. Nodes
AP1 to AP6 construct the backbone graphs in the corresponding figures.
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Fig. 5: An instance of a smart home with three access points

5.1.2 Network technology structures

The network technologies connect to the backbones through their gateways. In a
star topology, the center of the star network is considered the gateway. In a mesh
topology, the first created node in the network is considered the gateway labeled
with 0 in Figures 5 and 6. We consider a fixed number of nodes in the star and mesh
topologies in order to establish a controlled environment. During the generation
of the network technologies, they connect to the backbone nodes randomly. This
process is repeated ten times for each backbone to construct randomly generated
topologies. It is possible that star and mesh networks connect to the same backbone
node due to this random process.

The number of network technologies affects smart home networks in two ways.
First, through the topology that each type of network technology uses to estab-
lish the network, and second, by the number of nodes used in each network. We
generate the same network topology with the identical number of nodes for each
particular network technology so as to generate a controlled environment. In order
to study the effect of the number of technologies, we perform two groups of exper-
iments. In the first group, we consider two mesh and two star topologies in each
model and compare the results. In the second group, we add only one star and
one mesh network to the models and compare the results with the corresponding
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models constructed in the first group. We use Python NetworkX library to con-
struct both star and mesh topologies. The Caveman algorithm (Watts, 1999) in
NetworkX is used to build the mesh topology.

5.1.3 Cellphone integration

As discussed in Section 3, cellphones provide additional paths to the Internet,
improving network resilience against Internet connection failures through redun-
dant paths. In order to study the effect of redundant path with the number of
cellphones on the topological structure of the networks, we connect one to three
cellphones to each constructed model after integrating the network technologies
to the backbone. The cellphones are connected to the backbone nodes randomly.
There is no restriction with respect to connecting multiple cellphones to any par-
ticular backbone node. We also consider all cellphones have the same provider;
therefore, they connect to the same ISP through 4G/LTE/5G networks.

The generated instances connect to the Internet through RBB node to es-
tablish diverse path. Spatial diversity through connecting to different ISP, and
technological diversity (wired vs wireless) are the results of the cellphones and
RBB connections.

We generate 1500 smart home instances with two and four network technologies
(750 instances for each group) with the aforementioned conditions.

5.2 Analysis of smart home instances

In this section, we analyze generated instances from our framework explained in
Section 5.1 with graph centrality metrics. During the analysis, we categorize all
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instances with the same number of nodes in their backbones in one group and
study the effect of adding cellphones to the models as nodes supporting multiple
technologies and increasing path redundancy. In Tables 4 to 8, we calculate cen-
trality metrics for each group of instances per a particular number of cellphone.
All instances have the same number of network technologies. For each group, the
mean centrality value is calculated along with a 95 percent confidence interval.

Furthermore, we study the effect of the number of network technologies in
Figures 8 to 12. In the figures, instances with four network technologies (two mesh
and two star networks) are compared with the corresponding instances with two
network technologies. The figures also show the mean values with a 95 percent
confidence interval for each corresponding metric.

We start our analysis by measuring general properties of the models. Tables 2
and 3 show values for the network diameter, average connectivity, algebraic connec-
tivity, and efficiency of each group of instances without categorizing the calculated
values for a particular cellphone number. Table 2 shows the results for instances
with two network technologies while Table 3 shows the corresponding results for
instances with four network technologies.

Table 2: Graph measurement for models with two network technologies

Measurement
No. APs Diameter ±∆ Connect. ±∆ Algebra. ±∆ Efficiency ±∆
3 APs 8 0.13335 1.12019 0.00388 0.07716 0.00285 0.34604 0.00208
4 APs 8.16667 0.09931 1.10333 0.00276 0.0736 0.00219 0.33642 0.00156
5 APs 8.29722 0.05964 1.096 0.0017 0.07364 0.0013 0.32907 0.00105
6 APs 8.60556 0.12547 1.0908 0.00259 0.06956 0.00228 0.31928 0.00218

Table 3: Graph measurement for models with four network technologies

Measurement
No. APs Diameter ±∆ Connect. ±∆ Algebra. ±∆ Efficiency ±∆
3 APs 8.8 0.16868 1.08989 0.00206 0.06341 0.00324 0.30853 0.00188
4 APs 9.02667 0.12209 1.08008 0.00144 0.06027 0.00208 0.30229 0.00141
5 APs 9.30278 0.08285 1.07492 0.00101 0.05953 0.0013 0.29785 0.00094
6 APs 9.54444 0.13544 1.07186 0.00155 0.05862 0.00203 0.2916 0.00183

Figure 7a illustrates that the network diameters increase slowly when the num-
ber of nodes in the backbones increases; however, the increment is less than a unit.
As expected, the instances with two network technologies have shorter diameter
compared with instances with four network technologies; however, it shows that
adding two network technologies with different topologies increases the network
diameters nearly one unit. Diameter shows the longest shortest path in a network
and can be utilized as an indicator to calculate delay. In small networks with
the same size as the smart homes delay is negligent; however, when low-speed
technologies are involved, each extra hop can add significant delay. Simulation is
an adequate tool in such analysis compared to graph analysis when links have
different properties (Modarresi and Symons, 2020).

Figure 7b shows the results of the average connectivity (Beineke et al., 2002).
In the figure, the values of the average connectivity decrease when the number
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Fig. 7: Smart home graph measurement

of nodes increases. This figure also shows that instances with more network tech-
nologies have smaller connectivity compared with instances with fewer network
technologies. The trend of decreasing network connectivity is slower when more
access points are added to the network. The plots in Figure 7b always stay above
one since the models are connected. Adding more network technologies especially
with star topology to an instance with a particular number of node decreases the
current average connectivity. In addition, the results show that the instances are
partitioned approximately with one failure even if the backbones are bi-connected
in most instances. Another conclusion, specifically in our study, is that star net-
works are dominant in the models since most of the nodes in star networks have
degree one and keep the average connectivity low.

Algebraic connectivity in Tables 2 and 3 shows a decreasing trend meaning
that the connectivity in the instances is getting weaker and the diameter is getting
longer. This is because the number of nodes with a small degree, mostly degree
one (edge nodes), is increasing.

Figure 7c illustrates that the values of efficiency has a decreasing trend in both
groups of instances containing two and four network technologies. This is due to
the fact that all nodes in any network technology connect to other nodes through
their gateways. Therefore, there is no direct way for such nodes to communicate
with other nodes outside their network.

Table 4 shows the mean values of the betweenness centrality for each group
of models per number of cellphones. We observe that betweenness values decrease
when both the number of nodes in the backbones and the number of cellphones in
the models increase. However, in both cases, betweenness values decrease slowly.

Table 4: Betweenness centrality metrics for models

Betweenness
No. Phones 1 Phone 2 Phones 3 Phones

No. APs Mean ±∆ Mean ±∆ Mean ±∆
3 APs 0.06812 0.007 0.06574 0.00786 0.06348 0.00655
4 APs 0.06285 0.00382 0.06045 0.00323 0.05868 0.00246
5 APs 0.05776 0.0019 0.05583 0.00187 0.05435 0.00178
6 APs 0.05433 0.00431 0.05276 0.00466 0.05123 0.0039

Figure 8 illustrates the betweenness results for three-node-backbone instances
with two and four network technologies, and six-node-backbone instances with
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two and four network technologies. We do not show the results for four and five-
node-backbone instances in order to prevent overwhelming the figure. The results
indicate that the value of betweenness decreases for all models when the number
of cellphones increases. Moreover, though the overall betweenness values for all
instances are small, we observe a distinct difference between three-node-backbone
instances with two network technologies, compared with the rest of the instances.
We can also observe that the slope in the betweenness plot for the three-node-
backbone models with two network technologies is steeper compared with other
models in Figure 8. We should emphasize that the values in Table 4 and Figure 8
indicate the mean betweenness for all nodes. The growth of the number of nodes in
the backbones increases the probability of establishing new shortest paths between
each node pair resulting in decreasing the mean betweenness value. However, for
a fixed number of cellphones, the large values belong to the three-node-backbone
models due to the fewer number of nodes in the models compared with the rest
of the models. In other words, increasing the number of network technologies
decreases the betweenness values due to integrating more nodes. Regardless of
the number of network technologies, increasing the number of cellphones has a
negligible effect on the betweenness values.
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Fig. 8: Betweenness results for models with two and four network technologies

Table 5 shows the closeness values for all instances per number of cellphones.
Closeness shows the average shortest path values from any node vi to other nodes.
The larger value indicates that the nodes are closer to each other. The values in
Table 5 indicate that neither adding a new node to the backbone nor integrating
a new cellphone has a negligible effect on the closeness values. However, reducing
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the number of network technologies illustrated in Figure 9 changes closeness values
noticeably.

Table 5: Closeness centrality metrics for models

Closeness
No. Phones 1 Phone 2 Phones 3 Phones

No. APs Mean ±∆ Mean ±∆ Mean ±∆
3 APs 0.25623 0.0209 0.25892 0.0243 0.26138 0.02164
4 APs 0.25176 0.0117 0.25531 0.01049 0.25706 0.00838
5 APs 0.24969 0.00604 0.25256 0.00623 0.25431 0.0061
6 APs 0.24477 0.01418 0.24729 0.01547 0.24947 0.01383
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Fig. 9: closeness results for models with two and four network technologies

Table 6 shows the degree centrality values for all models per number of cell-
phones. Degree centrality values are relatively small for all models. The results in
Table 6 indicates that the three-node-backbone models have the highest and six-
node-backbone models have the lowest values. Integrated cellphones change the
degree centrality values very slightly since cellphones have degree 2 in the models.
The reason for very low mean centrality values is the number of edge nodes with
degree 1. All nodes in a star topology except the central node have degree 1. Sev-
eral star topologies have been integrated with each model resulting in low mean
degree values. Adding more network technologies with a star topology reduces
degree centrality more.
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In contrast, removing technologies with a star topology increases mean degree
centrality. Figure 10 shows changes in the mean centrality values. Furthermore,
the number of wireless stations connected to the backbone nodes of the three-
node models is fewer than other models resulting in increasing the mean degree
centrality values. Figure 10 also shows that adding one extra cellphone changes
the mean centrality values slightly while adding a network such as a star with low
degree centrality values changes the mean centrality values noticeably.

Table 6: Degree centrality metrics for models

Degree centrality
No. Phones 1 Phone 2 Phones 3 Phones

No. APs Mean ±∆ Mean ±∆ Mean ±∆
3 APs 0.04764 0.0014 0.04743 0.00134 0.0472 0.0013
4 APs 0.04314 0.00065 0.04296 0.00063 0.04277 0.0006
5 APs 0.03958 0.00039 0.03942 0.00037 0.03926 0.00037
6 APs 0.0364 0.00083 0.03627 0.0008 0.03613 0.00078
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Fig. 10: Degree results for models with two and four network technologies

We present the results of the mean eigenvector centrality values for all models
per number of cellphones in Table 7. Since eigenvector centrality is an extension
of the degree centrality, we observe that the number of cellphones does not change
the mean eigenvector values sharply. When the number of nodes on the backbones
increases, the amount of centrality values change even slower. In addition, the
distance between the values of each plot decreases from three-node-backbone to
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six-node-backbone models. The distances between plots are much recognizable
when the number of network technologies changes, as in Figure 11, showing the
results between two and four network technologies.

Table 7: Eigenvector centrality metrics for models

Eigenvector centrality
No. Phones 1 Phone 2 Phones 3 Phones

No. APs Mean ±∆ Mean ±∆ Mean ±∆
3 APs 0.10284 0.0083 0.10208 0.00744 0.10146 0.00731
4 APs 0.09448 0.0035 0.09411 0.00376 0.09357 0.00266
5 APs 0.08758 0.0017 0.08721 0.0015 0.08714 0.00142
6 APs 0.0852 0.00258 0.08536 0.00302 0.08515 0.00293
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Fig. 11: Eigenvector results for models with two and four network technologies

Katz centrality is an extension of the eigenvector centrality. However, in Katz
centrality, the effect of the farther nodes in a walk decreases in the calculation
of the centrality values. In addition, Katz centrality accepts weight for nodes to
change their effect on the centrality values. Table 8 presents the value of the mean
Katz centrality values. A noticeable change between the eigenvector and Katz
centrality is that the Katz values are larger than eigenvector values. Regardless of
this change, the trends of the values in both Table 7 and Table 8 are identical.

The above results show that adding new cellphones does not change the cen-
trality metrics values significantly, although providing duplicate and diverse paths
in a model improve the network resilience. As we have shown in previous work,
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Table 8: Katz centrality metric for models

Katz
No. Phones 1 Phone 2 Phones 3 Phones

No. APs Mean ±∆ Mean ±∆ Mean ±∆
3 APs 0.14327 0.00101 0.1416 0.00112 0.13998 0.0011
4 APs 0.13574 0.00054 0.13431 0.00054 0.13293 0.0005
5 APs 0.12915 0.00034 0.12793 0.00035 0.12671 0.00035
6 APs 0.12367 0.00074 0.12258 0.00076 0.1215 0.00075
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Fig. 12: Katz results for models with two and four network technologies

a multilayer model can illustrate duplicate and diverse paths better than a single
layer model (Modarresi and Symons, 2019b).

The results also show that most centrality metrics have higher values for models
with a small number of nodes in the backbone compared with larger networks with
more nodes in the backbones. The intermediate results also reveal that for the most
centrality metrics models with larger backbones and fewer network technologies
have higher centrality values compared with the models with smaller backbones
and more network technologies. For instance, models with five access points and
two network technologies have higher Katz centrality values than models with
three access points and four network technologies. We should emphasize that this
relationship is only true for models that are one or two access points (nodes in the
backbone) apart from each others.
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6 Conclusion and future work

In this paper, we introduce and demonstrate the role of an abstract model for
understanding the network properties of a complex IoT system. We focus on the
relatively simple context of smart homes. We consider commonly used technologies
and their corresponding network topologies with the goal of simplifying the repre-
sentational complexity of networks composed of heterogeneous technologies. Our
goal is to demonstrate how designers and engineers can take network topologies
into account so as to develop more resilient IoT systems. In our analysis we show
how to compare an instance of our model in the normal state and during the main
Internet connection failure with other baseline topologies such as star and mesh
using various graph centrality metrics. Our model represents a multi-technology
network whose nodes have a variety of functionality and different bit-rate links.
In these contexts, centrality metrics typically fail to explain the correct behavior
of the associated graph of the network. We identify which metrics are more ap-
plicable in light of the functions and importance of the nodes of the network. We
perform the same analysis on our technology interdependence graph. This analysis
provides valuable results without requiring researchers to consider all the details
of intractably complex networks.

We show how to build controlled experimental studies of instances of these
models and as an example, we analyze hundreds of instances of our smart home
instances to study resilience of such networks through path redundancy and di-
versity when nodes such as cellphones with supporting multiple technologies are
added. The results show that although the engineered home backbones can resist
multiple node failures, the networks on average are one-connected and one failure
can partition them. In addition, redundant paths do not change the mean values
of the centrality metrics noticeably.

Our plan for the future research is to design centrality metrics sensitive to
various link interactions. Such centrality metrics consider link diversity in the
calculation providing more salient results compared to typical centrality metrics
in which only path redundancy is considered.
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