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SOFTWARE ENGINEERING STANDARDS FOR EPIDEMIOLOGICAL MODELING  
 
 
Abstract 
There are many tangled normative and technical questions involved in evaluating the quality of 
software used in epidemiological simulations. In this paper we answer some of these questions 
and offer practical guidance to practitioners, funders, scientific journals, and consumers of 
epidemiological research.  The heart of our paper is a case study of the Imperial College London 
(ICL) covid-19 simulator, set in the context of recent work in epistemology of simulation and 
philosophy of epidemiology. 
 
 
1.0  Introduction 

 
There are many tangled normative and technical questions involved in evaluating the quality of 
software used in epidemiological simulations. In this paper we answer some of these questions 
and offer practical guidance to practitioners, funders, scientific journals, and consumers of 
epidemiological research.  The heart of our paper is a case study in which we provide an analysis 
of the Imperial College London (ICL) covid-19 simulator.   This simulator has been extensively 
used by the United Kingdom to help formulate public-health policy; it has been used to a 
somewhat lesser extent in public-health policy decision-making in the United States.  Developed 
primarily to predict the effects of public-health interventions such as shutdowns, quarantines, 
social-distancing, and the administration of vaccines, it can be viewed as a complicated data-
driven variant of the “susceptible-infected-recovering” (SIR) family of epidemiological models, 
first described in Kermack and McKendrick 1927.   

Our case study, combined with reflection on the state of the art in the philosophy of 
epidemiology and the ethics of engineering, serves as the basis for our recommendations for 
future epidemiological modeling projects. We contend that epidemiological simulators should be 
engineered and evaluated according to a set of public norms.  We take as our model for the kinds 
of norms that we regard as appropriate, the framework of safety-critical standards developed by 
consensus of the software engineering community for applications such as automotive and 
aircraft control systems.  To achieve that goal, the development and use of epidemiological 
simulators must have high levels of transparency, explainability, and reproducibility for 
stakeholders.  Furthermore, we recommend that such standards be mandated by funding agencies 
for epidemiological contexts that have direct and significant public policy implications. 

The structure of our argument is straightforward. In Section 2.0 we explain some recent 
work on the role computation in the philosophy of epidemiology. In Section 3.0 we highlight 
relevant research on the epistemology of computational modeling and simulation. In Section 4.0, 
we introduce a development  framework that has evolved over the past four decades in the 
software engineering community.  The purpose of this framework has been to provide a 
principled approach to balancing development cost and schedule against the possible harms of 
using software in high-risk venues.  In Section 5.0, we evaluate, within the framework 
introduced in Section 4.0,  the ICL covid-19 simulator.  Our study of this simulator demonstrates 
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that it does not satisfy the standards for safety-critical software in established industry and 
government practice.   

We recognize that the ICL simulator has been subject to intense critical scrutiny because 
of its role in government decision making during the covid-19 pandemic, and our purpose here is 
not to pile additional criticism on the work of the ICL team.  In this paper, we focus solely on the 
publicly available artifacts associated with the simulator.   We do not assess the empirical 
assumptions or epidemiological methodology employed by the ICL team. Instead, we hope that 
by carefully considering this high-profile epidemiological simulator, we can encourage scientific 
and philosophical communities to reflect on the norms governing the engineering of scientific 
software in a wide range of important contexts.  

Philosophers of science are beginning to understand the trade-offs that are at play in 
computational science and are becoming increasingly sensitive to the implications of software-
intensive scientific inquiry for traditional issues in philosophy of science (Symons and Horner 
2014).  Philosophers have also recognized that we cannot understand appropriate norms for 
scientific practice solely by reasoning about them a priori - we must take empirical evidence and 
technical constraints into account.  Most relevantly for this paper, for example, we cannot arrive 
at norms for evaluating the correctness of software without attention to the actual constraints 
facing software engineers.  Developers of any large piece of software cannot escape practical and 
theoretical constraints on error correction. These constraints are not discoverable from the 
philosophical armchair (Horner and Symons 2019, Symons and Horner 2019). Consequently, 
determining appropriate software standards for epidemiological simulators  requires an ongoing 
interdisciplinary effort.1   

While we rely on existing standards and norms in software engineering in our analysis, 
we are not insisting that the norms governing high-risk engineering contexts should be mapped 
directly and uncritically onto epidemiological modeling projects.  However, we will argue that 
the norms governing epidemiological practice are not solely a matter for epidemiologists 
themselves.  In addition to questions of social value and moral responsibility, epidemiological 
simulators are often informed or constrained by a range of epistemic, mathematical, economic, 
and technological considerations.  It is clear that many aspects of epidemiological modeling 
already fall outside of the expertise of epidemiologists.  The standards governing the 
development of important epidemiological simulators cannot be left solely to practitioners. The 
development of these standards requires careful normative reasoning that is often beyond their 
expertise.   

In addition to falling outside of the epidemiologists’ area of scientific specialization, 
normative deliberation governing scientific inquiry involve balancing the interests of the 
practitioners themselves with those of others. Standards for the development of epidemiological 
simulators must accordingly accommodate a complex set of stakeholders.  We must balance the 
interests of the producers and consumers of epidemiological research along with the interests of 
the broader communities that are affected by the public policy decisions influenced by this 
research.  In the fraught context of epidemiology this task inevitably involves balancing 
competing social values.    

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Much of the philosophical literature about software does not consider the philosophical import of general 
engineering constraints on software.  See Section 2.0 for further detail.  	  
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2.0  Some recent work on the role of computation in the philosophy of epidemiology 
 

Computing technologies have played an important role in medical and biological practice in 
economically developed societies since at least the 1960s (See e.g. Keller 2002).  Evaluating the 
role and usefulness of data-driven computational models and simulations is complicated in 
biological contexts for reasons others have explored in detail (See e.g. Leonelli 2011, 2012, 
2016, and Stevens 2017 for example). Epidemiology is an even more challenging context for 
evaluating the role of computational models and simulations than, for example, in molecular 
biology for reasons we will discuss below. More generally, as many philosophers have noted, 
computational models in biology have distinctive technical and epistemological features that 
make them uniquely difficult to assess.2  While philosophers have addressed the role of data 
science and computational modeling in biological contexts for two decades there has been 
relatively little scholarly attention given to the norms governing the engineering practices 
underlying these models.  Likewise, while philosophers of epidemiology have correctly 
emphasized the normative and political aspects of research in epidemiology, they have largely 
neglected the norms guiding engineering practices in the development of epidemiological models 
and simulations.  Since models and simulations are fundamental to epidemiological predictions 
and recommendations, they should also be subject to critical scrutiny.  

In the context of epidemiology, computational modeling and simulation techniques have 
become indispensable research tools (See Smolinski et. al 2003).  As Boschetti and colleagues 
have noted, computational modeling is sometimes our only way of advancing scientific inquiry 
in contexts where ethical considerations or practical constraints prevent the use of traditional 
experimental techniques (Boschetti et al 2012).  In epidemiology, complicated simulations and 
the manipulation of large data sets, along with the ethical and practical obstacles to 
experimentation have meant that computational methods have become centrally important 
research tools.   

During the COVID-19 pandemic in particular it was widely reported that the results of 
computer simulations provided by the ICL team weighed decisively in public policy 
deliberations in both the United Kingdom and United States governments (Landler and Castle 
2020).  Government officials are reported to have relied on epidemiological modeling and 
simulation to predict mortality due to the virus and to anticipate its effects on the healthcare 
system.  These simulations are also used to assess the relative merit of alternative interventions 
and public health responses to the pandemic (Freedman 2020).3  In an emergency decision 
making context, it is reasonable to turn to acknowledged experts on the relevant topics and 
throughout the pandemic, political decision makers in the United Kingdom government have 
been eager to present their decisions as grounded in the best available scientific evidence (UK 
Government 2020).  The extent to which decision makers have or have not ‘followed the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 See for example López-Rubio and Ratti 2019 for a discussion of the trade-offs between mechanistic explanation 
and prediction in applications of machine learning to molecular biology.   
3 Perhaps the most important policy role of these simulations has been their perceived predictive power.  For a 
discussion of the predictive role of computational models see Boschetti and Symons 2011 and Symons and 
Boschetti 2013.  See Ioannidis et al. 2020 for an assessment of the predictive power of prominent covid-19 modeling 
efforts to date.   
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science’ has become a fraught and highly politicized matter in many democratic societies 
(Stevens 2020; Sharma 2020).   

In these discussions it is often mistakenly assumed that policy is fully determined by our 
best epidemiology.  As we explain below, this assumption involves a misunderstanding of both 
the nature of epidemiology and its proper role in decision-making in democratic societies.  
Difficult trade-offs between different kinds of societal values and moral obligations will not, 
generally, be resolved by scientific expertise.  Epidemiologists cannot tell us, for example, in the 
case of the COVID-19 epidemic whether public health interventions ought to value the well-
being or education of children more highly than reducing the health risks to the elderly. These 
are moral and political decisions that are not illuminated directly by increased scientific 
understanding or better models and simulations. There is, moreover, an obvious dependence of 
deliberations in epidemiological contexts on the reliability of software tools that help to inform 
those deliberations: we cannot make software-informed ethical decisions unless the software is 
doing what we think it should be doing.  All else being the same, to achieve that end, we want to 
minimize, as far as is practical, the frequency of errors in epidemiological software.   

 
The role and status of computer simulations frequently figures, albeit unsystematically, in 

debates about what it means for governments and institutions to ‘follow the science’.  It is clear 
from reporting and from the actions of the United Kingdom government that the simulation 
results provided by the ICL team were decisively important in policy deliberations in March and 
April of 2020 (Landler and Castle 2020).4  It is also clear that the ICL group occupied a high 
position of scientific authority and trust from the perspective of political decision makers.   

 
‘Follow the science’ presumably means ‘follow the best science’.  However, determining 

which epidemiological recommendation is best is not a straightforward matter.  Given the 
complexity of the factors relevant to decision making during a pandemic, the public in 
democratic societies and their political representatives have placed great trust in the community 
of epidemiologists.  This is understandable, but often, public declarations of trust have implicitly 
projected an idealized and unrealistic level of neutrality and objectivity onto epidemiological 
research.  This runs counter to our best critical understanding as drawn from the history and 
philosophy of epidemiology.  As we will explain below, disagreement among epidemiologists 
can stem from differences with respect to values (Stevens 2020).5  

The way we have assigned trust to the epidemiological community is not unreasonable, 
but it involves oversimplification that can lead us to misunderstand our responsibilities as 
consumers of their research. We are operating with something like the following commonsense 
understanding of the relationship between scientific expertise and policy making:	   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 In mid-March, the ICL model was predicting that absent any public health interventions, the UK would suffer half 
a million deaths from COVID-19 (2 million deaths in the U.S.). 
5 See Stevens 2020 for a discussion of the confusion around ‘follow the science’ rhetoric in UK policy making.  He 
writes: “A provisional and contested set of statements about how the world is cannot be used directly as a rule for 
what governments should do. Ministers have to decide for themselves. They must take responsibility for these 
decisions and their own inevitable mistakes, rather than relying on science as if it were an apolitical and indisputable 
tablet of stone.” https://doi.org/10.1038/s41562-020-0894-x 



	   5	  

 
Commonsense view of scientific evidence as a guide to policy making 

Decisions that involve risk of serious harm require us to deliberate as carefully as is 
feasible.  Policy makers often have to rely on expert advice since our best available 
evidence and guidance for decision-making in many matters comes from scientific 
experts. In such contexts, it is usually rational to follow the advice of the relevant 
scientific community in order to increase the likelihood that our decisions promote our 
values and interests.  Commonsense recognizes that natural science cannot tell us what 
we ought to value or what our policy goals ought to be. Nevertheless, under ideal 
circumstances science can provide an understanding of the facts in a way that helps us to 
act consistently with the moral or political principles we share.   

Much in the commonsense view is in our view correct. However, it draws a sharp 
distinction between social values and norms and scientific inquiry in a way that is especially 
difficult to achieve in the case of epidemiology for reasons we will explain below.  The 
assumption that epidemiology is value neutral makes our insistence on the importance of high 
standards for scientific software seem like an unwarranted intrusion on scientific practice.  
However, there are degrees of neutrality in the sciences when it comes to values.  For example, 
when one turns to an epidemiologist for advice, one cannot be as confident of the relatively value 
neutral nature of their scientific judgment as one would be in discussions with a chemist.6  The 
history and philosophy of epidemiology have highlighted the complex moral and political 
landscape of the study of epidemics. In this context the standards governing how software for 
simulations ought to be applied are similarly complex.  

Disputes within epidemiology involve normative considerations in ways that disputes 
between chemists or physicists, for example, almost never do.  Consider debates concerning the 
social determinants of health, where disputants may offer causal stories about the origins of some 
public health concern that assume, or are motivated at least in part by their preferred socio-
political values.7  In epidemiology, social, political, and other considerations are difficult to 
disentangle from the manner in which scientific questions are framed.  The way epidemiologists 
think about causation, agency, possible interventions, relevant populations, risk, disease, and 
responsibility, are all informed by the values governing their practice.8     

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6	  There are philosophers of science who will object here, pointing to the role of value considerations in all sciences, 
even in chemistry.  Our point here is not to say that chemistry is perfectly neutral with respect to value 
considerations.  We are simply noting that there are degrees to which social values, political considerations, etc. play 
a role in science.  It is a mistake to say that because there is some political or social element to all sciences, there is 
no difference of degree.  	  
7 See Broadbent 2012 for a discussion of causal reasoning in epidemiology  
8 As mentioned above, for example, during the early stages of the COVID-19 crisis, harm to the education of the 
young and risks to the life of very elderly people were weighed against one another without a great deal of explicit 
public deliberation.  The assumptions about social priorities that motivated school closures and other interventions 
that harmed children and young people may well be defensible.  The kinds of interventions that were attempted in 
the early stages of the pandemic are all defensible given some set of social values.  In most cases, epidemiologists 
did not engage in explicit and public deliberation concerning their presuppositions about social values when they 
offered their initial recommendations with respect to interventions. 



	   6	  

Public reflection on norms is relevant for the practice and not just the application of 
epidemiology. In order to explain why, consider a disease like type-2 diabetes. There are 
interventions that would be effective in stopping the spread of this disease that we would regard 
as unconscionable violations of individual autonomy, or that most of us would presently regard 
as contrary to the ultimate goals of public health.9  For example, we might reject heavy taxation 
on calorie dense foods, mandatory exercise programs, etc. as possible responses to the disease 
because of the importance of other kinds of social goods. Generally speaking, the set of 
acceptable interventions that are given scientific consideration will be shaped by a range of 
social values.   

In addition to disagreeing with respect to what would count as an acceptable intervention 
in public health, social groups may also disagree over what kinds of health issues should be 
classified as diseases or as epidemics.  There is considerable disagreement over, for example, the 
claim that common mental health problems like anxiety and depression should be regarded as 
epidemics.10 Claims that obesity or attention deficit hyperactivity disorder are at epidemic levels 
in the United States, for example, are difficult to state categorically without reference to a large 
set of controversial normative assumptions. Ultimately, social values are negotiable. People with 
differing values can attempt to persuade one another with respect to the relative importance of 
conflicting values.  Given the role of social values in determining the space of acceptable public 
health interventions, the characterization of health, and the taxonomy of disease, epidemiological 
inquiry will always be situated within a particular social context and cannot be entirely neutral 
with respect to normative questions. 

Attempts to characterize the subject matter of epidemiology will also generally require 
reference to concepts that have normative features. Mathilde Frérot and colleagues surveyed the 
literature from 1978 to 2017 in order to determine the ways that epidemiologists understand their 
enterprise and how that understanding has changed through time.  They examine 102 definitions 
of ‘epidemiology’ and found that five terms were present in more than 50% of definitions: 
“population”, “study”, “disease”, “health” and “distribution” (Frérot et al. 2018).  Philosophers 
of epidemiology have noted that definitions of epidemiology will vary depending on the social 
and political contexts involved.  In their introduction to the recent Synthese volume on 
philosophy of epidemiology, Jonathan Kaplan and Sean Valles emphasize this contested nature 
of epidemiology (Kaplan and Valles 2019).11  They contend that “since the welfare of 
populations and communities are always at stake in epidemiology, the issues at hand are directly 
or indirectly political issues” (Kaplan and Valles 2019). 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9 See Tabish et.al 2007 for a defense of categorizing diabetes as an epidemic.   
10 See Baxter et al 2014 for an argument against considering common mental health problems like anxiety and 
depression as epidemics.   
11They contrast what they see as the divergence between the views of the World Health Organization and the United 
States Centers for Disease Control.  While they do not provide evidence for divergence between these two 
organizations, they do note two conflicting characterizations of epidemiology, both of which are drawn from Dicker 
et. al. 2006: “Epidemiology is the study of the distribution and determinants of health-related states or events in 
specified populations, and the application of this study to the control of health problems.” (2006, I-1) and later in the 
same document: “in epidemiology, the ‘patient’ is the community” (2006, I–4).  See Frérot et al. 2018 for a careful 
empirical assessment of the variety of ways that epidemiology has been characterized in recent decades. 
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Our task in this paper is to encourage attention to the norms governing software 
engineering in epidemiology.  The significance of these models for policy decisions that affect 
many of us in significant ways is clear.  Given that epidemiology is not neutral with respect to 
social values, non-practitioners have a right and an interest to concern themselves with the 
standards governing software engineering in this discipline. In addition, funders, journals, policy 
makers, and the broader public are entitled to require standards are sufficiently high to ensure 
that simulations are trustworthy.   

In the next section we discuss some of the most important epistemic aspects of 
trustworthiness for computer simulations. As we shall argue, part of determining the standards 
for what count as good software engineering practice will be determined by the level of risk  
involved in the deployment of the simulation.   
 
3.0  The epistemology of epidemiological computer simulations 
 
There has been significant public interest in the epistemic trustworthiness of epidemiological 
modeling efforts.12  Most criticisms have raised doubts concerning the assumptions and the 
quality of the data that go into the models rather than with respect to the quality of the software 
underlying simulations.  Our focus in the following is on properties of the software as software, 
rather than the scientific status of the assumptions, the mathematical models, or the quality of the 
data driving these simulations. Critics have occasionally pointed to weaknesses in the publicly 
available code for simulators (Lewis 2020).13  We will address some of these criticisms below, 
Public concern over the status of computational modeling has also involved more abstract 
epistemological themes.  For example, Kreps and Kriner 2020 note that populist media figures 
have cast doubt on computational modeling as a scientific enterprise.  In addition, the influential 
Fox News personality Tucker Carlson has asserted that computational models of Covid-19 are 
“completely disconnected from reality” (Siders and Ward 2020). In recent years philosophers 
have addressed some of the central epistemic problems associated with computer simulations in 
science.14  Epidemiological simulations are subject to all such problems, and in this section, we 
review some of this philosophical literature.   

One standard approach to understanding why scientific communities come to trust 
simulations relies on an analogy with the ways that epistemic entitlements work in other less 
controversial forms of inquiry (see for example Barberousse and Vorms 2014). In ordinary life, 
for example, we are generally entitled to trust the testimony of other people, the reliability of our 
senses, and the capacity of our basic cognitive faculties, such as our memory to transmit 
information without altering it in epistemically significant ways. This use of the idea of 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12	  Kreps and Kriner 2020 provide an assessment of public trust in covid-19 models, highlighting the role of 
uncertainty and the revision of models in deterioration of public trust. Through a series of experimental surveys, 
they attempt to show how the shifting scientific consensus can be reconciled with public trust in epidemiology.  In 
their discussion, they present many examples of the ways in which media and political actors cast doubt on 
modeling.  Notably, some of the most corrosive criticisms blend attacks on the empirical assumptions driving the 
models with broadly philosophical criticisms of computational models as “completely disconnected from reality”. 
For more on this line of criticism in populist media and politics see Sider and Ward 2020.   
13 There has been considerable popular attention to the issue of the quality of code in epidemiological simulations 
during the COVID-19 pandemic.  The quality of these analyses is mixed, for a flavor of some of the commentary see 
for example Lewis 2020.   
14	  See Juan Durán 2018 and Winsberg 2019 for an overview of the epistemic issues related to computer simulation.	  
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epistemic entitlement, largely drawn from Tyler Burge’s (1993; 1998) arguments, has been 
highly influential among philosophers in debates over the epistemology of computer simulation 
(Barberrouse and Vorms 2014; Beisbart 2017). Symons and Alvarado disagree, arguing instead 
that the analogical account of epistemic warrants is not appropriate in the context of computer 
simulations.  They have insisted on epistemic standards of the kind we apply to traditional 
scientific instruments (Symons and Alvarado 2019; Alvarado 2020).  On this view, computer 
simulations are not experts and should not be treated as such.  Instead, they are built by teams of 
experts or by experts working alone who may not be expert software engineers.  Thus, given the 
interdisciplinary integration necessary in a team, the use of the analogy with trusting experts is 
inappropriate.  The analogy is even less fitting in the specific case of epidemiological simulation 
than it is in science more generally, given that epidemiology relies on interdisciplinary teams 
with distinct sets of disciplinary standards. Furthermore, the resulting simulations are heavily 
mediated by what Eric Winsberg called motley practices (Winsberg 2010).   

The fact that we are not able to trust computer simulations by analogy with the manner in 
which we trust individual scientific experts leaves us with the problem of how policy makers and 
the public should decide which simulations and which models to rely upon.  There are many 
dimensions to this challenge, and it is beyond the scope of this paper to address this broader 
problem (see, for example, Symons and Alvarado 2019).  Trusting simulations involves many 
complicated criteria.  However, for the remainder of this paper we will argue that at least one 
obvious and necessary condition for justifiable use of simulations for public policy is that they be 
funded, managed, specified, designed, implemented, and maintained in accordance with the best 
available software engineering practices, in order to help minimize, as much as practical, the 
frequency of the kinds of errors that occur in all software development, regardless of application.  
We contend in this paper that these practices are as important to epidemiological policy-making 
as good experimental methods are in non-software-intensive scientific regimes. And not least, 
sound decision-making in epidemiological contexts that depends on epidemiological simulators 
must be able to assume that errors in that software have been minimized as much as practical.  
Among other things, that minimization requires adhering to software engineering practices that 
have (empirically) been shown to help minimize software error. 

Our recommendations will, in the near term, increase the cost of these simulation efforts 
and will require increased collaboration between scientists and software engineers.  However, we 
contend that the risks involved in decisions based on epidemiological modeling efforts warrant 
the additional resources and effort that we recommend here. During the Covid-19 pandemic it 
has become clear that public trust in epidemiology is undermined by the perception that its 
simulators are not developed according to the kind of rigorous standards that we expect in 
traditional scientific practice. In the following section we explore standards that can help ensure 
that simulators are not only trusted, but also trustworthy.   
 
4.0  Standards for software engineering 

 
As with all aspects of epidemiology, engineering standards governing the development of 
simulations are a matter where normative considerations overlap with technical and 
mathematical constraints.  Because of this, critical scrutiny of these simulations is not the 
exclusive purview of any subset of scientific experts as we argued above.  Practical guidelines 
for developers of scientific software are described and defended below.   We did not invent these 
standards.  Instead, our recommendations draw upon the history of software engineering.  For the 
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past five decades, the software engineering community has sought to codify practices and 
procedures that have been empirically determined to help minimize development cost, schedule, 
and risk (Boehm 1973; Myers 1976; Boehm, Abts, Brown, Chulani, Clark, Horowitz et al. 2000). 
This effort has produced an evolving series of software engineering standards, one of the most 
recent of which is ISO 2017.   

We note that scientific-inquiry software is generally not developed according to standards 
as demanding as those required for safety-critical software by ISO 2017.  Thus, our 
recommendations will be controversial and may be regarded as excessively restrictive for those 
who view epidemiology solely in terms of scientific inquiry.   
 Perhaps the most controversial feature of our proposal is the application of an approach 
drawn from engineering ethics to a discipline that primarily regards itself as scientific inquiry.15  
While the responsible practice of engineering is generally sensitive to the harms involved in 
various projects (Roddis 1993; Lynch and Kline 2000), one might argue that a science like 
epidemiology is different.  The ethics of scientific inquiry, that argument would contend, are 
very different from the ethics of engineering.   Most philosophers of science are likely to agree.  
The kinds of simulations that epidemiologists have produced have been regarded by 
philosophers, for example, as either formal or abstract objects or as special forms of experiments 
capable of yielding empirical information about the systems they simulate.16 This view of 
simulators (more generally, software), however, by fiat ignores  a wide range of general 
“engineering” issues that directly bear on the reliability and trustworthiness of simulators.  For 
example, questions about how we can help to ensure that a developer of a component in a 
simulator clearly understands how the software h/she develops integrates with software written 
by others, and what document ation programming and verification practices help to maximize 
reliability, do not arise if we consider simulator software to be an abstract object or a special 
form of experiment.   Following Alvarado 2020 we believe that in addition to serving as formal 
models or experiments, epidemiological simulations should also be understood as engineered 
scientific instruments.  In general, scientific instruments are expected to meet “fail-safe” 
engineering development standards that address engineering issues of the kind just mentioned.     

As Roddis 1993 notes, in engineering ethics, the standards governing instruments and 
practices are determined, at least in part, by the harms that can result from failures.  We contend 
that high risk-management standards are required for software engineering in epidemiological 
simulators given the high costs of failure involved in the deployment of these instruments in 
public policy decision making.   

We argue that where great harms can result, scientists, funding agencies, and 
governments ought to adopt standards of software engineering that are at least as high as the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
15 Epidemiologists sometimes present their work as a basic science for clinical practice in medicine.  See eg. Sackett 
et. al 1985 and Bonita et.al 2006. 
16	  Weisberg 2012 and Pincock 2011 regard computer models as formal extension of mathematical representation. 
Morrison, (2009, 2015) regards computer simulations as being a form of scientific experimentation (Ruphy 2015). 
Morrison and others have argued that computer simulations involve extra-mathematical considerations (Winsberg 
2018). These include measurement practices (Morrison 2009), representations and imaging (Barberousse et al. 
2014), and hypothesis testing and generation (Hartmann and Frigg 2005).  For a comprehensive overview of the 
state of philosophical discussions of computer simulations see Durán 2018.	  
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standards that societies routinely demand in, for example, critical infrastructure, aviation, or 
military contexts.  Because of the nature and extent of the harm to societies that errors in these 
simulations can cause, epidemiological modelers are subject to a special obligation to adhere to 
high standards in the development of their software.   

One objection to insisting on such standards is the risk that convergence to a single set of 
standards might inhibit or slow the development of scientific inquiry.  We believe that this risk is 
not significant in the long term and that open and transparent scientific software built to high 
risk-management standards is likely to help rather than hinder the scientific enterprise.   

Standards like ISO 2017, by virtue of the empowerment clauses they contain, are highly 
tailorable to specific risk regimes.  For example, these standards would certainly permit some 
simulators, for example, those used solely to assist inquiry, to be developed in a way that does 
not have to meet “fail-safe” standards.   ISO 2017 requires that other simulators, such as those 
used to verify the safety of nuclear reactors be built to “ultra-paranoid” safety standards.  The 
key point here is that engineering standards are consciously shaped by the judgment of risk 
involved in the development of the system in question.  Epidemiological simulators involved in 
public policy decision making obviously involve extremely high risks of harm.   
 
 
5.0  Software engineering standards in pandemic policy-making 
 

Since the late 1960s, the software engineering community has sought to codify consensus 
software development practices and procedures that have been (empirically) determined to help 
minimize development cost, risk (both developmental and operational),  and to help ensure that 
the products of such projects reflect user needs and values (Boehm 1973; Myers 1976; Boehm, 
Abts, Brown, Chulani, Clark, Horowitz et al. 2000), where values include the normative interests 
of all stakeholders.  These codification efforts have produced a series of software engineering 
standards.17  One of the most recent and widely used software engineering standards is ISO 
2017.  

As noted in Section 4.0, the standards allow extensive tailoring or as a function of cost, 
schedule, risk to property and life, and other harms of comparable consequence.   ISO 2017 
permits software whose failure would result in inconsequential loss of property, life, or revenue, 
or harms of comparable consequence, for example software developed solely for personal use, 
can be developed with little formality In contrast, ISO 2017 requires that software whose failure 
could result in large loss of property or life (e.g., aircraft or automobile control), or other harms 
of comparable consequence, be developed with extensive formality.18  
  
 Although there is some variation among these standards, they characterize software 
projects in terms of lifecycle phases, each with formal review and documentation requirements, 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
17 Such a standard is not a contract; in the absence of a contract, compliance with a standard is therefore voluntary.  
A contract, however, can make compliance with a standard mandatory. 
18	  For further information about software standards for high-consequence applications, see Boehm, Abts, Brown, 
Chulani, Clark, Horowitz et al. 2000, Hatton 1995,  ISO 2017, Koopman 2014, MISRA 2008, NASA 2004, Rierson 
2013, RTCA 2012, and FDA 2002.	  
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both which directly contribute, as needed, to the transparency, explainability, and reproducibility 
of the software (for the relevant community of stakeholders) developed under those standards. 
These phases are: 
 

1. specification 
2. logical design  
3. physical design 
4. implementation 
5. test  
6. maintenance  

 
The economic and risk-management rationale for a phase-structured approach to software 
development and management is based on two major premises (Boehm 1981, 38): 
 

I. In order to create a “successful” software product, we must, in effect, execute all of the 
phases at some stage anyway. 

II. Any different ordering of the phases will produce a less successful software product. 
 
Rationale (I) follows directly from questions that inevitably arise in the development of any 
software system: “What is the software supposed to do?” (Specification phase), “How do we 
ensure that everyone who helps to develop part the software understands how his/her part of the 
software correctly integrates with the rest of the software?”, especially if not all personnel know 
all aspects of the system  (Logical, and Physical, design phases),19 and “How do we determine 
that the software is doing what is supposed to do” (Test phase).   

Rationale (II) derives directly from empirical studies of the costs of fixing an error in a 
software system as a function of the phase in which the error is detected and corrected.  These 
studies show that in a large (> ~50,000 source lines of code (SLOC; Boehm, Abts, Brown, 
Chulani, Clark, Horowitz et al. 2000, 395)) or highly technical software project, a typical error is 
100 times more expensive to correct in the maintenance phase than in the specification phase; in 
small projects (< ~10,000 SLOC), a typical error is 20 times more expensive to correct in the 
maintenance phase than in the specification phase (Boehm 1976; Boehm 1981, 40). 

Each of phases 1-6 imposes requirements on, or equivalently, allocates requirements to 
the processes and products of one or more successor phases. Taken end-to-end, the resulting 
requirements-allocation induces a hypergraph (Berge 1973) spanning the elements 
(documentation, processes, and code) in the system.  

Documentation is crucial to ensuring the transparency, explainability, and reproducibility 
of software. Even though this point seems self-evident, it is sometimes incorrectly argued  that 
the code in a software system determines what that software is intended to do.  So, the argument 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
19 On average, five years after initial deployment of a software system, only 20% the original developers of the 
software remain on the project ( Boehm, Abts, Brown, Chulani, Clark, Horowitz et al. 2000, 48).  10 years after 
initial deployment, on average, none of the original developers remain on the project.  On small projects, 
furthermore, the loss of even a single key team member can force the project to restart or be abandoned.  Detailed 
documentation is the only way to help mitigate these risks. 



	   12	  

goes, we do not  need documentation: code is “self-documenting”.  Why is this view incorrect?  
Very simply, the syntax and semantics of programming languages are far from sufficient to 
determine the intended application semantics (what the code is intended to do) of a given body of 
software.  Any program, regardless of what the code seems to be about,  could be used solely to 
show that the machine on which it runs will in some sense cycle the program, without regard to 
anything else that program might be intended to do.  Only the combination of the specification, 
the logical design documentation, the physical design documentation, various test suites, and the 
code proper, can hope to capture the semantics of what the code is supposed to do. 

There is no guarantee that using a software development process of the kind described in 
this section will yield an error-free product.20 Empirical studies of software error and its causes 
show, however, that if such a framework is not used, with very high probability, software will 
contain at least 10 times as many errors software developed within such a framework (Boehm 
1973; Boehm 1976; Myers 1976; Boehm 1981, 40).  

While informal software development is often tolerated in academic contexts, standards 
must be higher in the case of epidemiological modeling that is used in public-health policy-
making.  Why? The epidemiological simulators used in policy-making are typically used in a 
way that errors in those simulators could lead to substantial loss of property or life, or to other 
harms of comparable consequence.  To make informed public-health policy, decisions-makers 
must be able to assume that every practical effort has been made to minimize error in software. 

The development of general software engineering standards has combined a recognition 
of both general principles of engineering ethics and attention to the empirical features of 
software engineering practice.  In the next section we apply these standards to the ICL covid-19 
simulator. 
 
 
5.1 A case study 
 
 During the period from late-March through late-May 2020, we assessed how well the 
publicly accessible artifacts associated with the ICL covid-19 simulator conform to ISO 2017 
when that standard is tailored to maximize reliability.  Our assessment was based on informed 
software engineering judgment, reading those artifacts, building and executing some of the code, 
and applying various analysis tools (identified below) to the artifacts in that archive.  

Our assessment was constrained by some important limitations.  Most importantly, to our 
knowledge there is no publicly accessible documentation that officially identifies the baseline for 
the ICL covid-19 simulator project, though a cursory inspection of publicly available materials 
might suggest otherwise. For example, as of 12 June 2020, an ICL covid-19 project website (ICL 
2020d) appears to identify the mapping between certain code archives and various team papers 
and reports.  Our analysis revealed, however, that the code archives identified on this website 
contained modification date/time stamps that are later than the issuance dates of these papers and 
reports. We further discovered that some of the graphics that appeared in the papers and reports 
referenced on the website were not directly produced by any of the code in the associated code 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
20 See Horner and Symons 2019b for a discussion of whether it is even possible, in all cases of interest, to determine 
that we have produced error-free software.   
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archives.  (It is possible, of course, that some of these graphics were produced by applying 
software that is not identified in the reports/papers or on the website to the outputs of code that 
does appear in the archives.) In addition, according to Eglen 2020, the code in the publicly 
accessible ICL covid-19 simulator archive (ICL 2020c) is not identical to the version of the code 
that produced the tables in ICL 2020b (“Report 9”), which was fundamental to COVID-19 policy 
decision-making in the UK and the US in early 2020.  Eglen reports that an assessment of ICL 
2020c produces results that agree with the content of some tables in ICL 2020b for the test cases 
run in Eglen 2020.     It is therefore not possible to infer from this website, or from the 
papers/reports linked at this website, the identity of the specific code used produce the results 
reported in those documents.   

We note that there is, at present, no legal or institutional requirement for the ICL 
simulator project to make any software-development artifact of that project accessible to the 
general public.  It is not surprising, therefore, that, even if they exist, many of the artifacts 
identified in the consensus software engineering standards are not publicly available in the ICL 
simulator project. In our judgement, however, it is highly likely that ICL 2020c is closer to the 
actual ICL covid-19 simulator project baseline than any other publicly available archive; 
accordingly, we chose ICL 2020c, along with the published articles and reports identified in ICL 
2020d, as the baseline for the analysis reported here.  

Assuming ICL 2020c as the baseline for our assessment, Sections 5.1.1 – 5.1.6 describe, 
at a high level, the major features of each phase of the software engineering process described in 
ISO 2017 and assess how well, within the limitations described above, ICL 2020c conforms to 
that standard.   
 
 
5.1.1  Specification Phase 
 
The principal function of the specification phase of a software project is to generate an 
agreement (called the specification) among stakeholders that states what objectives a software 
system must achieve.  Among other things, the specification is intended to reflect the results of 
the negotiation of stakeholder values.  In the case of epidemiology simulator development 
projects, such tradeoffs can concern negotiations of the tradeoffs between the rights of the 
younger and the elderly, or tradeoffs in  optimizing on the social-distancing directives/guidelines 
that collide directly with other activities that all but require person-to-person physical contact. (In 
several stakeholder communities, these tradeoffs (as of mid-2020) have yet to be resolved.)   In 
some policy-making venues, furthermore,  the general public is a stakeholder and thus can 
legitimately claim a right to have, in a timely way, access to all policy-related artifacts such as 
simulator rationale, design, and implementation (a view institutionalized, for example, in UK 
Government Office for Science 2010): 
 

73. SACs [Scientific Advisory Committees] and their secretariats should aim to 
prepare papers in accessible language. Where issues require technical discussion, 
consideration should be given to separate, and additional, production of a ‘lay 
summary’ to ensure that all matters are accessible to all interested parties 
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regardless of specialist knowledge. (UK Government Office for Science 2011, 18) 
 
Examples of publicly negotiated specifications include the Internet protocol standard (Internet 
Engineering Steering Group 2020),  the GPS signal specification (US Air Force 1995), nuclear 
reactor control simulation (Oak Ridge National Laboratory 2020), and pacemakers (Boston 
Scientific 2007). 
 
Justifiable decision-making typically requires transparency and explainability – even insuring, in 
some cases, some level of lay understanding.21  Policy makers cannot be expected to be able to 
evaluate models and simulations at the level of technical detail, but modelers should be 
transparent with respect to, for example, the degrees of uncertainty involved in their predictions.  
In complex decision-making problems facing policy makers, modelers must therefore represent 
the extent to which their predictions should be believed. Trusting experts is unavoidable and 
fully appropriate in certain domains, especially those with high technical content. However, as 
we discussed above, expertise in technical, scientific, or engineering domains (such as 
epidemiology), does not imply expertise with respect to societal goals and values.   

Relevant value considerations and assumptions shaping the development of the 
simulation should be explicitly stated in the specification to the extent possible.  The degree to 
which precautionary or other values enter into the choice of parameters, data sources, etc. should 
also be captured in the specification, because they can affect our understanding of the meaning of 
the predictions derived from the simulation. 

Unfortunately, there is no publicly accessible specification for ICL 2020c.  Ideally, future 
iterations of this and related simulators ought to be generated according to publicly negotiated 
specifications.  At the very least, the specifications stipulated by the modelers themselves should 
be made available to the public.  

Modelers and their funding organizations might protest that epidemiological simulation is 
a time-sensitive project whose urgency precludes such public deliberation.  We contend, 
however, that the trust invested in epidemiologists by the public and their political 
representatives in these contexts means that they must be able to provide a well-articulated and 
understandable specification.   A clear specification will explain the purpose and assumptions of 
the simulator in ways that will help ensure its trustworthiness and will permit all stakeholders to 
evaluate its import for their decisions.   

 
 
5.1.2 Logical Design Phase 
 
The objective of the logical design phase is to generate an abstract description, called a Logical 
Design Document, of a system that satisfies the requirements of the specification. Understanding 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
21 European Union law establishes a right to explanation in relation to the use of technology in important decisions 
affecting individual citizens.  See for example   https://eur-lex.europa.eu/legal-
content/EN/TXT/?qid=1465452422595&uri=CELEX:32016R0679 Rectital 71 (accessed June 8 2020).  French 
national law establishes the right to explanation in the 2016 Loi pour une République numérique.  See also Morely, 
Cowls, Taddeo, and Floridi 2020.  Such a right is not categorical, however.  In the case of code and documentation 
that contains information whose disclosure could compromise national security, access to these artifacts must be 
restricted.  
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what “satisfaction” means in the software development process is not simple and it involves 
considerations beyond the scope of this paper. For an explanation of the notion of satisfaction in 
the context of software development projects, see Symons and Horner 2019.   
 The abstract description that satisfies the specification assumes no particular 
implementation in hardware, software, or human procedures. Various languages can be used to 
express the logical design.  In current practice, the Unified Modeling Language (see, for 
example, Rumbaugh, Jacobson, and Booch 1999) is often used for this purpose. No software is 
generated during this phase. There is no publicly accessible Logical Design document in ICL 
2020c. This is not unusual for software used in scientific inquiry, but it does violate the 
consensus standards for software deployed in high-risk/reliability contexts.   
 
 
5.1.3 Physical Design Phase 
 
The objective of the physical design phase is to generate a concrete description, typically called 
the Physical Design Document, or Detailed Physical Design Document, of how specific 
machines, software, and human processes, and their interactions, will satisfy the requirements 
allocated to them from prior phases.  The software-specific component of the Physical Design 
Document is often called the Software Design Document, or SDD.  (For a detailed description of 
an SDD, see US Department of Defense 1988.)  Assuming ~50 software statements per page of 
source code, this document typically contains ~10 pages per page of source code. No software is 
generated is generated during this phase.  There is no publicly accessible SDD for ICL 2020c. 
However, a few items that would be contained in an SDD are included in the inline comments of 
the source code in ICL 2020c.   
 
 
5.1.4  Implementation Phase 
 
This phase implements on actual machines, and in software and human procedures, an 
operational product that satisfies the requirements allocated to it from prior phases.  The software 
developed during implementation phase is typically required to satisfy certain programming-
language-specific standards (sometimes called “coding guidelines”). These standards prescribe 
programming-language-specific practices that are, and proscribe practices that are not, 
acceptable.   (Such requirements are often stated in, and inherited by allocation from, the 
specification.) The primary role of these programming-language-specific standards is to 
minimize programming-language-specific coding errors.22   

By manually analyzing ICL 2020c along with the reports and papers nominally associated 
with that archive we determined that the source code in ICL 2020c was intended primarily to 
study the effect of “interventions” (e.g., school closings, social distancing) and population-
distribution details on the course of a pandemic.  Based on our analysis of inline comments in the 
source code, and on the style of the code itself, the code in ICL 2020c appears to have descended 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
22 For examples of such standards, see Hatton 1995; Evans 2003; Perforce 2013; Google 2020. 
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from a multi-thousand-statement simulator written in the C language by one developer in the 
early 2000s.  In its current form, the code is almost entirely implemented in the C language 
subset of C++. For example, ICL 2020c makes no use of C++ classes or polymorphism.23  

By applying the static source code analyzer Understand (Scientific Tools 2020) to the 
source code in ICL 2020c we found that the code consists of ~1000 declarative/definitional, and 
~10,000 executable, statements, distributed across approximately 30 files.  Half of these 
statements are in a single file that contains the source for the simulator’s main routine.   

The  complexity of software serves as a rough measure of the intelligibility and the 
maintainability of the code (Symons and Horner 2014). All else being equal, software 
engineering attempts to minimize the complexity of a software system while satisfying all other 
requirements on that system.  There are many way to measure software complexity.  One of the 
more widely used measures of software complexity is McCabe complexity.  Informally put, 
McCabe complexity is the number of distinct execution paths through the code (McCabe 1974). 
Statistically, the frequency of errors in software is an increasing function of McCabe complexity 
(Basili and Perricone 1984).  ~50% of ICL 2020c has extremely high McCabe complexity.   
Most of this complexity comes from deeply nested “if, then” statements, primarily in function 
main,  the understanding of which requires the reader or developer of the code to maintain 
awareness of complex chains of conditionality. 

A simulator typically requires that the user enter input values for the parameters that are 
relevant to the model underlying the simulation.  “Manual” analysis of the ICL 2020c source 
code and its input files reveals that in order to generate a simulation, one must enter 40-50 
distinct data-items, such as boundaries of geographic/jurisdictional regions, populations, and 
intervention types and dates, among others.  For the most part these are data are intended to be 
derived from public health sources but in some cases it is less clear how these assignments are 
determined. The high number of parameters in this simulator and its resulting complexity cannot 
be avoided at some level if the model is to assess the effects of even the intervention regimes that 
have already been deployed by various countries.  As a result, ICL 2020c is unavoidably more 
difficult to comprehend, correctly use, calibrate, and maintain than lower-fidelity 
epidemiological models such as SIR (for a description of SIR, see Vynnycky and White 2010; 
Nowak and May 2000). Arguably, only the authors of the code can reliably use it in its current 
form.  For the stakeholders, transparency with respect to these parameters is important in order to 
ensure the trustworthiness of the simulator.    

ICL 2020c performs little to no sanity-checking (such as plausible-range-of-value testing) 
of its inputs, relying instead on users and external data suppliers to perform essentially all data 
curation. In actual practice, the data used as input to ICL 2020c has proven to be of highly 
variable reliability. 

With the exception of the high-complexity portion of the code mentioned above, the ICL 
simulator is, as of 15 September 2020, being modified in a way that is generally in accordance 
with at least some of ISO 2017. The scope of those modifications has to date been relatively 
limited.  Based on time-stamps in ICL 2020c, the code has experienced, on average, average 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
23	  We made this assessment by reading the ICL 2020c source code, and by analyzing the ICL 2020c source code 
with the documentation tool doxygen (van Heesch 2020) and the static source code analyzer Understand (Scientific 
Tools 2020).	  
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annual change traffic (number-of-statements-of-software-changed/total-number-software-
statements in the system) of ~5%.  This fraction is typical of software that has undergone 
relatively minor modifications, not of software that has been wholly re-engineered (Boehm 1981, 
543; Boehm, Abts, Brown, Chulani, Clark, Horowitz et al. 2000, 28).24  

It strongly appears, furthermore, that the ICL covid-19 simulator is in the process of 
being re-engineered from the C++ language to the R language.  Among other things, this re-
engineering has replaced several large segments of C++ statistical-methods software with what is 
intended to be equivalent high-level public R library functions.  There is no publicly available 
documentation about how the project has shown, or intends to show, whether that the C++, and 
the nominally corresponding R, code agree (or whether they should).   It is worth noting that the 
public R-library curation protocol does not assign  responsibility to anyone for ensuring that the 
functions in the library perform correctly or are suitable for any particular purpose.  This fact has 
direct implications for the reliability of the re-engineered product (which might, but not because 
of any binding legal reason, be more reliable than the original). 
 
 
5.1.5 Test Phase 
 
This phase determines whether the product generated in the Implementation phase (Section 2.5) 
satisfies all requirements allocated to the software.  Testing is typically performed at various 
software-build levels.  There is no publicly accessible Test Plan, Test Report, or official 
Regression Test for ICL 2020c.  (ICL 2020c does contain some test files, but what quality-
control role those files are intended to support is not identified in ICL2020c).  Eglen 2020 reports 
the results of porting, without modification, the source code in ICL 2020c to two small 
supercomputing platforms.  Using test files provided by the ICL covid-19 simulator team (it is 
not clear these are the test files included in ICL 2020c), the ported code produced results that 
were the “same” as the results of some tables in ICL 2020b (“Report 9”).  It should be noted, as 
Eglen 2020 does, that these demonstrations show nothing about the correctness of ICL 2020c. 
 
 
5.1.6  Maintenance Phase 
 
This phase iterates the phases described in Sections 2.2 – 2.6 after the product is deployed, as 
needed.  Maintenance policies and procedures are documented in a Maintenance Manual.  
There is no publicly accessible Maintenance Manual for ICL 2020c. 
 
In summary, ICL 2020c was not developed in accordance with the requirements of  ISO 2017, or 
any comparable software-engineering-practice standard, tailored for high-reliability/safety-
critical applications.   As  noted above there is compelling empirical evidence that failing to 
adhere to such a standard typically leads to at least an order of magnitude higher frequency of 
errors than if standards like ISO 2017 were followed (Boehm 1981, 381-386).   
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
24 This assessment was based on manually analyzing the source code in ICL 2020c and our experience with software 
engineering standards and practices. 
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6.0  Discussion and conclusions 
 
Evaluating, understanding, and controlling the quality of, software used in epidemiological 
simulations requires us to address a complex of interdependent normative and technical 
questions.  In this paper, we have explained that epidemiological simulators are de facto integral 
to epidemiological policy making. Justifiable policy-making in epidemiological crises such as 
the current COVID-19 pandemic involves trades among diverse values. Some of these values, 
such as tradeoffs between the rights of children and the rights of the elderly, lie outside the scope 
of epidemiology proper. Some of the values, including the need to assess the objective effects of 
various interventions, clearly lie within the scope of traditional epistemology. Furthermore, 
normative considerations play a role in determining what counts as an epidemic and what counts 
as an acceptable form of public health intervention.   
 Our analysis began by reviewing some recent work on the role of computation in 
philosophy of epidemiology. We then highlighted relevant research on the epistemology of 
computational modeling and simulation. From there, we described a consensus framework for 
software engineering that has developed over the past four decades in the software engineering 
community.  The purpose of this framework is to provide a principled approach to balancing 
development cost and schedule against the possible harms of using software in high-risk venues.  
Within that framework, we evaluated the publicly accessible simulator archive of the Imperial 
College London (ICL) covid-19 simulator (ICL 2020c).  Our assessment shows that ICL 2020c 
does not satisfy the standards for safety-critical software identified above (ISO 2017).   
  We have explained why the norms from high-risk engineering contexts should be adopted 
in epidemiological contexts that have direct and significant public policy implications.  In all 
projects of this kind, we urge teams to adopt methods that support transparency, explainability, 
and reproducibility within the framework of consensus safety-critical software engineering 
standards.  We urge journals and funding agencies to require that published results include 
access to a baseline instance of relevant software along with all the relevant documentation in 
order to ensure reproducibility and transparency.  More specifically, we contend that 
epidemiological simulators should be engineered and evaluated within the framework of safety-
critical standards developed by consensus of the software engineering community (ISO 2017, 
tailored for safety-critical applications).   
   
 This analysis serves as the basis for our recommendations for software engineering 
standards for future epidemiological modeling projects. Furthermore, we recommend that these 
standards be mandated by funding agencies for epidemiological contexts that have direct and 
significant public policy implications. 
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