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Abstract 

Software-intensive systems are ubiquitous in the industrialized world.  The reliability of software 

has implications for how we understand scientific knowledge produced using software-intensive 

systems and for our understanding of the ethical and political status of technology.  The 

reliability of a software system is largely determined by the distribution of errors and by the 

consequences of those errors in the usage of that system.  Here we argue that even in software 

that is developed in accordance with the best practices of contemporary software engineering, 

various kinds of error in software occur at the empirically observed average rate of about one 

error per hundred lines of code.  We compare the taxonomies of empirically observed software 

error rates reported in the published literature with Giuseppe Primiero’s (2014) taxonomy of 

error in information systems.  The goal of such comparisons is to discover taxonomies that help 

to reduce the software error rate in practice.  

 
1. Introduction 

 
To date, there is no comprehensive theory of error in software that is both standardized and 

widely used in software engineering practice.  In general, what might such a theory of error look 

like?  A number of approaches are conceivable.  One might understand the purpose of a theory of 

error to involve explaining the source or sources of error.  As such, a theory of error would 

provide an answer to the question of why errors occur. Alternatively, one might seek a theory 

that explains what the essential nature of software error is.  Thus, we have at least two questions 

that a general theory of error could aim to answer: Why do errors occur? and What is an error?  

While we can imagine varying ways to understand the purpose of a theory of error, a first step in 

the development of any such theory is to understand clear instances of error in a well-defined and 

relatively well-understood domain.  In this paper, we focus on errors that arise in software 



engineering because it is a domain in which error is a pressing concern and where considerable 

resources have been devoted to studying and correcting it.  Empirical research into software error 

rates is valuable, but as we shall show, it also has significant deficiencies.   These limitations 

become especially clear in light of recent conceptual work on error.  Though philosophical 

research into the problem of error in software is in the very early stages, it already exceeds 

empirical studies in some important respects and offers some hope for clarifying ways in which 

engineering practice can be improved.   

There are some general features of error that philosophers have illuminated and that can 

serve as the basis for theoretical engagement with software engineering practice.  At the most 

general level, for example, Nicholas Rescher notes that error in human affairs results from our 

being limited creatures whose “needs and wants outrun our various capabilities” (Rescher 2007, 

2).  On this view, to err is human, and insofar as humans have a hand in it, error in software 

engineering practice is unavoidable.  In general, technological artifacts, like software-intensive 

systems, are created to help us exceed our innate capacities (Humphreys 2004).  As we extend 

ourselves, it seems that we inevitably go astray.  Empirical evidence seems to show that when it 

comes to software engineering we go astray at predictable rates.  More recently, Giuseppe 

Primiero (2014) has offered a conceptual account of errors in information systems recognizing 

three general types of errors:  mistakes, failures, and slips.  Each of these has what Primiero calls 

conceptual, and material, subtypes. (Thus, there are six high-level types of error in that 

taxonomy).   

 Section Three provides an overview of the results of a wide range of empirical studies of 

software error published between 1978 and 2018. We follow our review of the literature with an 

informal categorization of software system errors that comprehends the range of error types that 

appears in that literature.  Next, we compare this informal taxonomy with Primiero’s taxonomy 

of errors in information systems.  Finally, we use those results to suggest an experiment that 

could be used to determine how to conduct pairwise comparisons of error taxonomies. The 

ultimate goals here are to help reduce the software error rate in practice and to help us 

understand, at least in some ways, how error in software can limit human inquiry. 

As we discuss below, empirical investigation over the past four decades shows a good 

agreement among average software error rates, regardless of application type – about one to two 



empirically observable errors per hundred lines1 of code. One natural response to this finding is 

to say that it indicates the need for more rigorous testing in software engineering.  However, 

even in software that has been tested as well as is practicable, various kinds of error in most non-

trivial software projects occur at the empirically observed average rate of about one error per 

hundred lines of code.  In addition, it is likely that, for non-trivial software that is useful in 

scientific, engineering, or business applications there are hard theoretical limits to the project of 

error correction, in addition to the pragmatic trade-offs faced by software engineers (Symons and 

Horner 2017).  The persistence of error in software engineering is a remarkable feature of the 

empirical studies that we consider.  While we will have to live with error, clearly some of these 

errors matter more than others.  Understanding the varieties of error that arise in software will be 

an important part of learning to cope with life in an increasingly software dependent society.     

 

 

2. Software Systems, Specifications, and Errors.    

 

The empirical and conceptual parts of this paper are restricted to errors in software 

systems.  ISO/IEC 2008 defines a software system S to be a collection of processes and artifacts, 

abstract or concrete, that are essentially or by fiat associated with a sequence of instructions 

written in computer languages (such as as C++, Fortran, or Ada) that execute on some hardware 

system, within some usage context.  In this sense, a software system includes computer programs 

written in one or more computer languages, together with the specification, design, test, 

implementation, and operational processes (including human interactions) and artifacts 

associated with these activities.  

A software specification, H, is a set of imperative sentences that state what objectives S 

must achieve2, but not how S must achieve those objectives. For example, the imperative “By 

1969, the system must send a man to the moon and bring him back alive” is part of what a 

system must achieve, but “Use a Saturn rocket whose flight software is implemented in IBM 

assembly language” addresses part of how the objective might be satisfied.     

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 For the purposes of this paper, a line of code is a “statement”, as “statement” is defined in the standard for a given 
computer language.  For a related view, see Table 2.53 in Boehm 2000. 
2 In practice, it is common to distinguish elements of a specification that are mandatory from those that are not.  
Typically the qualifier “must” or “shall” is used to delineate a mandatory requirement. 



For expository convenience, we posit that H is not an element of S. From a software 

engineering perspective, at a high level S, and thus errors that may arise in S, involve life-cycle 

process phases and associated products (artifacts) of S. Given H, those life-cycle process are 

(following ISO/IEC 2008) 

• Creating a logical design (LD) of S, allocating allocating elements of H to the LD, then 

• Creating a physical design (PD) for S that includes extensive realizations of S in 

computer languages and allocation of elements of the LD to the PD, then  

• Implementing the PD in computer languages to run on designated hardware, then 

• Integrating and system testing S 

• Deploying S 

• Maintaining/sustaining S 

 

Each of these phases typically generates documents that are subjected to review during the 

lifecycle.3  Several variants of the lifecycle process are possible (see, for example, Stutzke 2005, 

esp. Chapter 10), but apart from mandating that S satisfies H, these differences make no 

difference for the purposes of this paper.   

 However S is realized, we posit that in order to be correct, S must satisfy H; in our view, 

this satisfaction relation can be characterized in model theoretic terms.4  If S does not satisfy H, 

we will say S has a software error. 

 

3 Review of empirical studies of software error 

 

As early as 1969 it had become apparent to the software engineering community that the number 

of errored instructions in software systems was increasing primarily as a function of software 

system size (i.e., as the number of lines of software in the system of interest; Royce 1970).  This 

observation suggested that a quantitative characterization of error rates in software is relevant to 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 In general, the process of allocating H to the elements of the system proceeds by phases and involves “deriving” 
and allocating requirements from previous phases in the lifecycle.  The end result of this allocation process is an 
acyclic graph of allocations to elements of the developed system.  The allocation process typically has high 
epistemic and contextual content.   
4 Although explicating this relationship in detail is outside the scope of this paper, we believe that the schema of this 
relation can be captured in the following way.  “S satisfies H” iff for each model M of H, there is some model M’ of 
S such that M is homomorphic to M’. 



the management of complex programming projects.  Numerous studies along these lines were 

published in the late 1970s and early 1980s.  After this initial period of high interest, however, 

the number of quantitative empirical studies of software error rates published per year 

diminished until the early 2000s.  Thereafter, interest in the quantitative characterization of 

empirical software error rates grew again. Among the reasons for this renewed interest was the 

increasing codification and institutionalization of software engineering processes beginning in 

the late 1990s (e.g., IEEE 2000, ISO-IEC 2008).  The growing importance of security, concerns 

about liability, and an increase in theoretical consideration of software engineering practice 

among philosophers and other humanists may have also contributed to the revival.    

Managing error in large, multi-person software projects is now a matter of considerable 

concern and attention.  Despite this concern, most contemporary software development projects 

almost never involve statistical hypothesis testing based on quantitative error rates (DeMarco 

1982, Humphrey 2008): typically quantitative error analysis in large software projects is limited 

to tracking the number of errors, with relatively little attention regard to the nature of those 

errors, as a function of time.5   

In practice, of course, software engineering projects catch some errors during software 

development by using model-checking, compilers, linkers, software development environments, 

formal reviews, and testing.  Inevitably, however, errors escape these checks and are detected, if 

at all, only after the software has been deployed.  

Roughly 100 empirical studies have been published since 1970 on software error rates.  

Of those studies we chose eleven widely cited studies that involve quantitative data collection, 

reasonably well-documented methods, a broad range of error types, and sample sizes of twenty 

or more projects representing a variety of application types.  While our sample is not exhaustive, 

we regard it as representative.  To help assess whether our sample is representative, we examined 

every abstract in IEEE Transactions on Software Engineering that mentions software error.  If 

the abstract mentioned software error, we reviewed the associated full paper to assess whether it 

contained information that should be included in a representative sample of empirical software 

error-rate literature.    We found, based on this method, that our sample was in fact 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 Large software projects typically use an error tracking system that records error-reports generated by developers 
and testers and records actions taken (status-tracking) concerning those reports.  Although such error tracking 
systems could be used to inform formal statistical analyses of error-rates, they are typically not optimized to be used 
this way. 



representative.6  In addition to our survey of the literature, one of us (AU#1) conducted an error 

analysis of the Linux operating system (excluding the kernel) using the splint static analyzer 

(University of Virginia 2018).   

 For each of these twelve studies, we recorded the general application type (the domain in 

which the software is used, whether the software was an application or part of an operating 

system, the general types of error recorded, the average fraction of lines sampled that contained 

at least one error, and the standard deviation of the fraction of the errored lines.  (We will explain 

the taxonomy of error types below.)   Our findings from the empirical literature, and from our 

splint analysis of Linux, are summarized in Table 1.  

  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6	  This result is not especially surprising, because at least two of the sources contained in our sample  (e.g., Boehm 
1981 and Humphreys 2008) themselves contain broad summaries of published empirical software error rates. 	  



   

Table 1.  Some descriptive statistics of empirically observed software error rates obtained 
at the completion of system test, for a range of software application types. 
 

Application type Types of error  Fraction of 
sampled lines 
errored, average 

Fraction of 
sampled lines 
errored, 
standard 
deviation  

References 

Banking  Misunderstanding 
the specification, 
logic, numerics 

0.01 (10-year 
total) 

0.011 (10-year 
total) 

Banker et al. 
2002, p. 34 

Military towed 
marine sensor 
array 
(SURTASS) 

Misunderstanding 
of specification, 
logic, numerics 

0.03 not available Thielen 1978 

Various various 0.02 not available Charette 20057 

 

Various 

Misunderstanding 
of specification, 
logic, numerics 

0.02 (average 
across all app. 
types) 

not available Jones 2008, pp. 
433-434 

Various Java and 
C++ applications 

Misunderstanding 
the specification, 
logic, numerics 

0.02 (average over 
all app. types) 

0.01 Phipps 1999 

Various Misunderstanding 
the specification, 
logic, numerics 

0.02 not available Thayer, Lipow, 
and Nelson 1978 

Various Misunderstanding 
the specification, 
logic, numerics 

0.03 (average over 
all app. types) 

not available Boehm 1981, p. 
383 

Various Misunderstanding 
the specification, 
logic, numerics 

0.03 (average over 
all app. types) 

not available Jones 1978 

Various US-
produced 
software 

Misunderstanding 
the specification, 
logic, numerics 

0.02 (average over 
all app. types) 

not available Jones 1981 

Various Misunderstanding 
the specification, 
logic, numerics 

0.02 (average over 
all app. types) 

not available Humphrey 2008, 
p. 58 

Operating system Logic, memory 0.005 not available Malkawi 20149 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 The error rates stated in Charette 2005 are an order-of-magnitude estimate. 
8 Humphrey 2008 states this data in a high-level summary form only. 



kernels  management, task 
management 

Linux operating 
system, 
excluding the 
kernel 

Logic, incorrect 
type conversion,  

memory 
management 

0.02 0.01 Unpublished 
splint results 
obtained by 
AU#1, 2018) 

 
 

In our survey, we discovered that the taxonomies used in published empirical software error 

studies typically varied, and on the surface appeared to be incommensurable, from study to 

study.  On further analysis, however, it became clear to us that the range of error types reported 

in the empirical software error literature could, with only a slight abstraction,10 be represented in 

just a few higher-level types of error.  In our review we categorized these higher-level error types 

as follows: misunderstanding of the specification, logic, numeric, and memory management. 

This agrees with various taxonomies of empirical software error discussed in Bowen 1980 and 

Boehm 1981 (p. 383), although it is not strictly identical to any one of them.    In the following, 

we illustrate what the categories in our taxonomy mean. 

 

3.1 Misunderstanding the specification 

By far, the kind of error most frequently reported in these studies was “Misunderstanding the 

specification”.   This error type presumes that the specification is clearly and unambiguously 

formulated (at least for sufficiently informed, well-intentioned readers).   In many software 

system development projects, however, the software engineers assigned to implement to a part of 

the specification may not be fluent in the domain the specification addresses, and often enough, 

do not even know who the specification writers are.  This can lead to all manner of 

misunderstandings.   An engineer could fail to understand the specification in at least two 

different ways.  For example, the engineer could fail to understand that a particular model or 

theory (e.g., Newtonian mechanics) was presumed by the specification.   Or, the engineer might 

incorrectly allocate or map the requirements stipulated by the specification.  For example, 

suppose the engineer were given the requirement to compute the trajectory of a missile in real 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  
9 Malkawi 2014 states that the owners of the data prohibit reporting the identity of the operating system(s) of 
interest. 
10	  Discovering an “appropriate” abstraction not a mechanical activity, and whether a given abstraction A is “better 
than” another, B, depends on the purpose the abstraction must serve.  	  



time.  Suppose further that the engineer allocated this requirement to a machine that was too 

slow to perform the computation. This would be an error in allocating requirements. 

  

3.2 Errors in numerics 

Many application types require a representation of real numbers (e.g., in the representations of 

forces, distances, and temperatures). In general, modern digital computing systems can only 

approximate the true value of real number quantities of interest.  In some applications, the 

difference between the digital approximation, and the true value of the quantity of interest, does 

not matter and can be ignored.  But it often does, and this a relatively common source of error.  

More specifically, it is not uncommon to find errors in deployed software arising from the 

following sources (the list is neither mutually exclusive nor jointly exhaustive; see University of 

Virginia 2008 for a more comprehensive, and more fine-grained (C-language-oriented) list): 

 

 a.  The developer doesn’t understand, or provide protection against, the numerical 

accuracy and precision limitations in a numerical algorithm. 

  

 b.  The developer is not aware of, or doesn’t pay attention to, the limitations of numerical 

type conversions in the language.  For example, a developer might try to replace the value of a 

64-bit-precision variable with the value of a 128-bit-precision variable. The precision of the 

result could be 64 bits, 128 bits, or ill-defined.  In many software development environments, 

this kind of error, even if it is undefined in the language of interest, is not reported by the 

compiler. 

 

 c. The developer is not aware of smallest positive value representable in the computing 

environment (in computing jargon, often called the “platform epsilon”).  Every computing 

environment has a smallest positive value that is representable in that environment.  Any attempt 

to compute a value smaller than this may result in an undetected error, in some cases with 

disastrous results. 

 

3.3 Incorrect logic  



Arguably, logic errors could arise in almost any aspect of any taxonomy of errors.  Given that 

programmers are not logically omniscient, we cannot expect to prevent logic errors in a system 

with even moderate levels of complexity. Among the more common types of logic errors are: 

 a.  The developer does not understand the logical structure of what is being represented. 

 b.  In a mutually exclusive list of logical cases, the developer fails to manage one or more 

cases.11 

 

 

3.4 Memory management errors 

All of today’s general-purpose computing systems contain physical memory (hardware in which 

information is stored and from which it is retrieved) that must be managed.   At some level, these 

computing regimes require management of memory allocation (designating specific memory for 

use by a program), referencing (locating a location in memory), writing to and reading from 

memory, and deallocation (releasing previously allocated memory for use by other programs) in 

order to satisfy speed (“time complexity” (Aho, Hopcroft, and Ullman 1983, Section 1.4)) or 

space (“space complexity” (Aho, Hopcroft, and Ullman 1983, Chap. 12)) constraints.    In some 

languages or applications, this kind of detail is often managed automatically, by the operating 

system, a run-time environment,  or the compiler/linker.  In such cases, the software engineer 

does not have to explicitly manage memory.  In some languages or environments, memory 

management must be done by the application programmer.     

 

4. Limitations and caveats 

Most of the projects referenced in Table 1 were developed under best practicable engineering 

standards.  The error rates in Table 1 are typical of those found in software projects after the 

software became operational.  The rough taxonomy we have sketched above certainly does not 

exhaust the varieties of errors and failures that software projects encounter.  Empirical studies of 

this kind will tend to miss many important ways that things can go wrong.  For example, it has 

been estimated that about 15% of software projects are terminated (“fail”) before, or shortly 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 There is straightforward programming technique that helps to mitigate the effects of this kind of error – 
essentially, it requires including a logical case clause that handles anything that lies outside the cases explicitly 
enumerated/diagnosed by the program.  The technique isn’t a panacea, of course.  A software engineer must use it 
religiously, and something reasonable must be done by a program if the program finds itself in a non-enumerated 
logical state.   



after, completion of development because of errors in the specification – i.e., the specification 

does not actually state what the procurer/user needs/wants (DeMarco 1982, 3; Stutzke 2005, 9).  

No data from projects that “fail” in this sense are reflected in Table 1. 

In addition, computing hardware is susceptible to failure.  Some of these failures are 

transient and are detected and automatically corrected by the computing environment.  Many are 

not.  No computing hardware failures are considered in the empirical studies we evaluated, nor 

are they discussed further in this paper.  Hardware failure is an unavoidable reality for software 

intensive systems insofar as software must be implemented in physical devices and these devices 

are subject to the contingencies of the physical world.    

 Furthermore, a software error has at least two dimensions: the type of the error, 

considered independently of how the software system is used, and the consequences of the error 

in the context in which the software system is used (see MISRA 2013; Rescher 2007, 4).  An 

error in one usage context might be of no consequence, but that same error might be fatal in 

another usage context.  The taxonomy in Table 1 does not sharply distinguish these two 

dimensions.   

 These limitations and caveats are not intended to be a criticism of the empirical work 

conducted to date. Regardless of how one approaches a characterization of software error, it  is 

likely impossible to find a taxonomy that strictly partitions (i.e., provides a mutually exclusive, 

jointly exhaustive decomposition of) software error space. A typographical error, for example, 

could be associated with essentially any kind of error.  

 Developers rarely publish metrics, including error metrics, on their projects (DeMarco 

1982). There are many reasons for this.  Not least, it takes time and money to analyze error 

metrics, and almost no software procurement specifically pays a developer to attend to software 

error metrics analysis.12  In addition, a published error metric discloses something about the 

performance of the developer, and this can create the perception of a developer weakness or even 

lead to legal liabilities. 

 

5. Interpreting the results of empirical studies 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12 In a competitive environment, of course, a developer that paid no attention to software error would go out of 
business. 



At least three significant observations can be made about the empirical studies of software error 

to date.  Most strikingly, there is good agreement among average empirical software error rates 

reported from 1978 to 2018, regardless of application type – about one to two empirically 

observable errors per hundred lines of code.  In addition, these studies suggest that this error rate 

has not appreciably changed in nearly 40 years of software engineering practice.  Note also that 

standard deviation of the empirical error rates, where reported, are large relative to the average 

error rates.  This suggests that the empirical software error-rate data has high dispersion. Third, 

the splint error measurements (performed by AU#1) on Linux are especially worth noting.  

Linux is used in, or used in the development of, roughly 10 billion devices worldwide.  We 

would expect a widely used operating system to have among the lowest empirical software error 

rates.  A splint analysis suggests that this assumption is false  – Linux, exclusive of the kernel, 

has an empirical error rate of 2% (on average, there are two errored C-language statements per 

100 C-language statements, exclusive of the kernel, making the Linux error rate (exclusive of the 

kernel) comparable to that of non-operating-system code.  The consequences of these errors in 

any given usage regimen, of course, is a separate question. 

 Analysis of empirical studies of error rates show some striking features, as we have seen.  

However, the error types shown in Table 1 may not shed sufficient light on how we might best 

reduce error rates.  It is likely that understanding the kinds of errors that arise, their prevalence, 

seriousness, and ideally their sources, will allow us to make progress on reducing the prevalence 

of the errors that we care about.  To begin to address this challenge we need a taxonomy of errors 

that is at least logically complete (within an appropriate universe of discourse).  We consider 

Giuseppe Primiero’s 2014 taxonomy of errors in information system as a productive start on 

such a project.   

 

 

6. An overview of Primiero’s taxonomy of errors in information systems 

 

Primiero’s taxonomy of error in information systems depends heavily on a formalized 

characterization of information systems.   To render his account of error clear enough for the 

purposes of this paper, we must first recount some of that formalism.  Primiero’s approach 

begins with the recognition that computing systems have both epistemic (informational/semantic 



content) and computational (“mechanical operational”/”instructional”) features, and these are 

related in various ways.  An adequate account of error in computing systems must take both 

these features and their relationship into account.  To achieve this end, Primiero begins by 

characterizing information systems in terms of an informational semantics that is cast in a 

procedural idiom (analogous to the idiom of Abstract State Machines).13  The procedural idiom 

includes two main operations on informational contents: access and use.  In that idiom, local 

validity (i.e., true in a given context) of informational content “is explained in terms of the 

instructions needed to reach a given state; global validity is given by the set of states the system 

goes through to reach a given goal” (Primiero 2014, 251).  “Moving to reach a goal is explained 

by accessing the information at a given starting state and using that information by performing 

syntactic transformations on it, obtaining the next state.” (Primiero 2014, 251).   

 The language of Primiero’s characterization of information systems has countably many 

types.  Terms are objects in types.  A formula in that language is the expression that an object is 

of a given type.   Sets of formulas are also included in the language.  Operations work on terms 

to define non-atomic formulas.  States correspond to models of the language where types are 

declared valid (Primiero 2014, 251).   

 More precisely, the alphabet of the language of the informational semantics of Primiero’s 

2014 characterization of information systems is 

 a. types := {A, B, C, …} 

 b. processes := {a1, a2, a3, …} 

 c. data stacks := {Γ1 , Γ2 , Γ2 , …} 

 d. states :=  {S1 , S2, …} 

 e. operations  :=  {r1, r2, …, rn} 

 

Types express propositions that are true by terms.  A term can be defined by a program accessed 

and executed at some state; in that case, its type corresponds to the specification declaring 

validity of a content by that program.  In this representation, a specification is based on a 

functional interpretation of the system.  More formally, Primiero defines (2014, 252): 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13 Characterizing how the epistemic content of a computing system could be cast in a procedural idiom involves 
some interesting, and likely difficult, questions, such as “Can we reduce ‘knowing’ to a procedural idiom?”.  
Addressing those questions is beyond the scope of this paper. 



 Let S be a set of states and S ∈ S.    A specification α  (= A-valid) is the content made 

valid by accessing and using a program of type A at state S ∈ S. 

 

 In a state (Γi , α) a process ai is executed, instantiating a specification α under a set of 

other states.  To every non-terminal state S in Γi, a finite set of rules applies to reach content 

valid at S’.  A model for the system evaluates every S by transition to some S’.   

 

 Let  Γi  be a sequence of processes.  A goal G is a state S = (Γi , α) for a system if α	  

is the intended specification of the system, i.e., the processes in Γi are supposed to make the type 

A in α valid  (Primiero 2014, 252). 

 

 A data stack Γi is a (possibly empty) sequence of processes or programs that is accessed 

and executed from states S1 to Si to reach a specification α at state Si+1. (Primiero 2014, 252) 

 

 φ is a strategy if φ is a collection of rules or instructions that, given an initial state, are 

used by the system to reach a goal G by accessing and using the information valid at 

intermediate states.  (Primiero 2014, 252) 
	  

 
 A procedure is a triple  P = <φ, S, G>, where φ is an operation,  S is a set of states, and G 

is a goal reached via φ.  (Primiero 2014, 252). 

 

 Given this characterization of an information system, Primiero 2014 defines a taxonomy 

of errors whose highest-level types are mistakes, failures, and slips,  as follows. 

On Primiero’s account, “[m]istakes are errors involving the description and the design of 

the problem to be solved, or the specification to be implemented.  […] resulting from a faulty or 

incorrect explanation and presentation of the object for which a validation procedure is 

required.”  (2014, 259).   Mistakes have both conceptual and material subtypes.  

 A conceptual mistake is a mistake in which a […] pair (P, G), where P is a procedure and 

G is a goal, “contains or refers to an ill-defined “category”14 A. (Primiero 2014, 259).  For 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
14 By “category” in this context, we take Primiero to mean “type”, in the sense of the reserved term “type” his 
formal characterization of information systems. 	  



example, consider a specification that requires as its subroutine an algorithm to compute 

Newtonian velocity. To define the domain of such function in a way that accommodates 

Einstein-relativistic behavior would represent a conceptual mistake.  

 A material mistake involves “[…] the structural design of the strategy, where a pair (P,G) 

is given that includes elements operations or processes that do not constitute a strategic (sub-) 

goal to G.  […]  This means that at the design level (e.g., in the physical design of the software) 

there is an error implementing the system requirements specification.” (Primiero 2014, 259)  For 

example, suppose the system specification required computing leap years (which must be 

divisible by 4) but the implementation tried to compute leap years by testing to see whether the 

years were divisible by 3. 

 Primiero defines failures as “[…] errors explicitly referring to the rules used in the 

evaluation and resolution of the problem (respectively, the validation of the specification) or 

related to the resources these rules have to access.”   (Primiero 2014, 260)  As with mistakes, 

Primiero explains how failures have both conceptual material subtypes. Conceptual failures 

involve “[…] problems in the selection and formulation of rules or strategies.”  (Primiero 2014, 

260).   

 Material failures involve ‘[…] problems related to the accessibility of the resources 

required for the correct execution of a procedure for the problem or specification at hand.” 

(Primiero 2014, 260)   All memory management errors in the sense of Table 1, for example, are 

material failures. 

 The least clearly delineated type of error discussed by Primiero is what he calls slips.  

According to Primiero, slips are “errors generated by the applications of rules that are 

appropriate to the given goal, but that do not match some formal criteria.” (Primiero 2014, 261).  

Slips have both conceptual and material subtypes.15 Conceptual slips are “practical errors related 

to algorithm design, i.e. where the selection of range and domain, the order of rules applied and 

subrecursion definitions are chosen for an efficient algorithm” (Primiero 2014, 262).  For 

example, we might try to apply a second-order-valid numerical integration routine that requires a 

fourth-order-valid integrator.   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
15 Primiero infelicitously defines slips as “material errors” (2014, 261) thus making the subcategories of conceptual 
and material slips less clear than they should be.  We simply strike “material” from the original definition of slip 
here for the purposes of our exposition.    



With these definitions in hand, we can now compare the empirical software error 

taxonomy of error types (in Table 1) with Primerio’s taxonomy of errors in information systems  

(refer to Table 2).   

  



 

Table 2.  Correspondence between empirical software error types shown in Table 1 and 
elements of Primiero’s (2014) taxonomy of information system errors.  S = 
misunderstanding the specification, N = numerics, L = logic, M= memory management, as 
defined in Table 1.  ND = not well-differentiated in the empirical software error literature. 
 

Primiero’s 2014 

taxonomy  

 Correspondence to the 

taxonomy of errors in Table 1 

Mistakes   

     Conceptual S (ND) 

     Material L (ND) 

Failures   

     Conceptual S 

     Material N (ND), L(ND), M 

Slips  ND 

     Conceptual ND 

     Material ND 

 

 

Two observations immediately follow from Table 2.  First, it is clear enough that the error types 

described in the literature on empirical software error rates (i.e, the error types shown in Table 1) 

correspond in various ways to some of the error types in Primiero’s taxonomy (that 

correspondence, however, is not one-to-one).  Second, there are error types in Primiero’s 

taxonomy for which there is no clear counterpart in the empirical software error types of Table 1.  

That observation implies that the error types in the existing empirical studies that we reviewed 

are, relative to Primiero’s taxonomy,  less than complete and fail to capture some important 

features of software error.  In this context at least, philosophical  analysis provides a more fine-

grained differentiation of error types and dimensions than we find in the existing empirical 



software error literature. As we noted above, this difference is especially significant in the case 

of errors in software systems whose consequences can vary by context of use.   

 

 

 

7. Discussion  

Primiero’s formal characterization of information systems can support a much more 

general notion of information system error than the “mistake/failure/slip” taxonomy that he 

provides.  One could argue, more generally, that any aspect of any computing system that is 

inconsistent with any feature of a given formal characterization of information systems could be 

called an ‘error in an information system’.  Even within Primiero’s taxonomy of errors, the  

“mistake/failure/slip” types represent just one of several logically possible partitionings of the 

space of error types (in the generalized sense of  ‘error in an information system’ mentioned in 

the previous sentence).16  How one carves up the space of the taxonomies of error that can be 

defined in terms of a given characterization of an information system will depend on the interests 

of the “partitioner”.  Those interests may include, but are not limited to, the concerns of the 

community of software engineerng practitioners.   

Whether any particular taxonomy can be used as the basis for a taxonomy of errors that 

helps to reduce software errors in practice can be decided experimentally.  One can imagine a 

classroom-scale experiment of the following sort that is designed to provide a pairwise 

comparison of competing error taxonomies.  In this experiment each student is assigned to one of 

three types of teams.   

 

Team Type 1 develops software to a specification, using only the empirical software error types 

of a given taxonomy as part of its development processes.   

 

Team Type 2 develops software to the same specification, using a competing taxonomy as part 

of its development process.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
16 Primiero’s interest in partitioning information system error space into mistakes, failures, and slips appears to be 
twofold.  First, that particular partition corresponds in some natural ways with the way software engineering practice 
talks about errors (Primiero 2014, 258).  Second, Primiero’s classification corresponds reasonably well with at least 
one classification of errors in science (Primiero 2014, 258). 



 

Team Type 3 analyzes the error statistics of the software developed by Teams of Types 1 and 2.   

 

For a sufficiently large sample of Teams of Types 1 and 2, conventional statistical hypothesis 

testing can be used to compare the error-rates of Teams of Types 1 and 2.    

  

 

8.  Conclusions 

 

The reliability of software is intimately related to, if not fully determined by, the distribution of 

errors in software systems and the uses to which that software is put.  Even in software that has 

been tested as well as is practicable, various kinds of error in software occur at the empirically 

observed average rate of about one error per hundred lines of code. Reducing the frequency of 

software error is a major goal of software engineering practice.  Empirical software error rate 

studies provide limited insight into the nature of software error.   

In this paper we compared the taxonomies of empirically observed software error rates 

reported in the published literature with Primiero’s taxonomy of error in information systems.  

This comparison shows that although philosophical research into the problem of error in 

software has barely begun, the insights this kind of analysis of software error has provided 

already exceed the insights provided by empirical studies of software error in several important 

respects.  These results show how this kind of analysis can help to clarify how engineering 

practice can be improved, while at the same time grounding software error characterization in an 

epistemically and logically transparent idiom. 
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