

Understanding error rates in software engineering: Conceptual,
empirical, and experimental approaches

Jack K Horner and John Symons

University of Kansas

Abstract

Software-intensive systems are ubiquitous in the industrialized world. The reliability of software

has implications for how we understand scientific knowledge produced using software-intensive

systems and for our understanding of the ethical and political status of technology. The

reliability of a software system is largely determined by the distribution of errors and by the

consequences of those errors in the usage of that system. Here we argue that even in software

that is developed in accordance with the best practices of contemporary software engineering,

various kinds of error in software occur at the empirically observed average rate of about one

error per hundred lines of code. We compare the taxonomies of empirically observed software

error rates reported in the published literature with Giuseppe Primiero’s (2014) taxonomy of

error in information systems. The goal of such comparisons is to discover taxonomies that help

to reduce the software error rate in practice.

1. Introduction

To date, there is no comprehensive theory of error in software that is both standardized and

widely used in software engineering practice. In general, what might such a theory of error look

like? A number of approaches are conceivable. One might understand the purpose of a theory of

error to involve explaining the source or sources of error. As such, a theory of error would

provide an answer to the question of why errors occur. Alternatively, one might seek a theory

that explains what the essential nature of software error is. Thus, we have at least two questions

that a general theory of error could aim to answer: Why do errors occur? and What is an error?

While we can imagine varying ways to understand the purpose of a theory of error, a first step in

the development of any such theory is to understand clear instances of error in a well-defined and

relatively well-understood domain. In this paper, we focus on errors that arise in software

engineering because it is a domain in which error is a pressing concern and where considerable

resources have been devoted to studying and correcting it. Empirical research into software error

rates is valuable, but as we shall show, it also has significant deficiencies. These limitations

become especially clear in light of recent conceptual work on error. Though philosophical

research into the problem of error in software is in the very early stages, it already exceeds

empirical studies in some important respects and offers some hope for clarifying ways in which

engineering practice can be improved.

There are some general features of error that philosophers have illuminated and that can

serve as the basis for theoretical engagement with software engineering practice. At the most

general level, for example, Nicholas Rescher notes that error in human affairs results from our

being limited creatures whose “needs and wants outrun our various capabilities” (Rescher 2007,

2). On this view, to err is human, and insofar as humans have a hand in it, error in software

engineering practice is unavoidable. In general, technological artifacts, like software-intensive

systems, are created to help us exceed our innate capacities (Humphreys 2004). As we extend

ourselves, it seems that we inevitably go astray. Empirical evidence seems to show that when it

comes to software engineering we go astray at predictable rates. More recently, Giuseppe

Primiero (2014) has offered a conceptual account of errors in information systems recognizing

three general types of errors: mistakes, failures, and slips. Each of these has what Primiero calls

conceptual, and material, subtypes. (Thus, there are six high-level types of error in that

taxonomy).

 Section Three provides an overview of the results of a wide range of empirical studies of

software error published between 1978 and 2018. We follow our review of the literature with an

informal categorization of software system errors that comprehends the range of error types that

appears in that literature. Next, we compare this informal taxonomy with Primiero’s taxonomy

of errors in information systems. Finally, we use those results to suggest an experiment that

could be used to determine how to conduct pairwise comparisons of error taxonomies. The

ultimate goals here are to help reduce the software error rate in practice and to help us

understand, at least in some ways, how error in software can limit human inquiry.

As we discuss below, empirical investigation over the past four decades shows a good

agreement among average software error rates, regardless of application type – about one to two

empirically observable errors per hundred lines1 of code. One natural response to this finding is

to say that it indicates the need for more rigorous testing in software engineering. However,

even in software that has been tested as well as is practicable, various kinds of error in most non-

trivial software projects occur at the empirically observed average rate of about one error per

hundred lines of code. In addition, it is likely that, for non-trivial software that is useful in

scientific, engineering, or business applications there are hard theoretical limits to the project of

error correction, in addition to the pragmatic trade-offs faced by software engineers (Symons and

Horner 2017). The persistence of error in software engineering is a remarkable feature of the

empirical studies that we consider. While we will have to live with error, clearly some of these

errors matter more than others. Understanding the varieties of error that arise in software will be

an important part of learning to cope with life in an increasingly software dependent society.

2. Software Systems, Specifications, and Errors.

The empirical and conceptual parts of this paper are restricted to errors in software

systems. ISO/IEC 2008 defines a software system S to be a collection of processes and artifacts,

abstract or concrete, that are essentially or by fiat associated with a sequence of instructions

written in computer languages (such as as C++, Fortran, or Ada) that execute on some hardware

system, within some usage context. In this sense, a software system includes computer programs

written in one or more computer languages, together with the specification, design, test,

implementation, and operational processes (including human interactions) and artifacts

associated with these activities.

A software specification, H, is a set of imperative sentences that state what objectives S

must achieve2, but not how S must achieve those objectives. For example, the imperative “By

1969, the system must send a man to the moon and bring him back alive” is part of what a

system must achieve, but “Use a Saturn rocket whose flight software is implemented in IBM

assembly language” addresses part of how the objective might be satisfied.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1 For the purposes of this paper, a line of code is a “statement”, as “statement” is defined in the standard for a given
computer language. For a related view, see Table 2.53 in Boehm 2000.
2 In practice, it is common to distinguish elements of a specification that are mandatory from those that are not.
Typically the qualifier “must” or “shall” is used to delineate a mandatory requirement.

For expository convenience, we posit that H is not an element of S. From a software

engineering perspective, at a high level S, and thus errors that may arise in S, involve life-cycle

process phases and associated products (artifacts) of S. Given H, those life-cycle process are

(following ISO/IEC 2008)

• Creating a logical design (LD) of S, allocating allocating elements of H to the LD, then

• Creating a physical design (PD) for S that includes extensive realizations of S in

computer languages and allocation of elements of the LD to the PD, then

• Implementing the PD in computer languages to run on designated hardware, then

• Integrating and system testing S

• Deploying S

• Maintaining/sustaining S

Each of these phases typically generates documents that are subjected to review during the

lifecycle.3 Several variants of the lifecycle process are possible (see, for example, Stutzke 2005,

esp. Chapter 10), but apart from mandating that S satisfies H, these differences make no

difference for the purposes of this paper.

 However S is realized, we posit that in order to be correct, S must satisfy H; in our view,

this satisfaction relation can be characterized in model theoretic terms.4 If S does not satisfy H,

we will say S has a software error.

3 Review of empirical studies of software error

As early as 1969 it had become apparent to the software engineering community that the number

of errored instructions in software systems was increasing primarily as a function of software

system size (i.e., as the number of lines of software in the system of interest; Royce 1970). This

observation suggested that a quantitative characterization of error rates in software is relevant to
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3 In general, the process of allocating H to the elements of the system proceeds by phases and involves “deriving”
and allocating requirements from previous phases in the lifecycle. The end result of this allocation process is an
acyclic graph of allocations to elements of the developed system. The allocation process typically has high
epistemic and contextual content.
4 Although explicating this relationship in detail is outside the scope of this paper, we believe that the schema of this
relation can be captured in the following way. “S satisfies H” iff for each model M of H, there is some model M’ of
S such that M is homomorphic to M’.

the management of complex programming projects. Numerous studies along these lines were

published in the late 1970s and early 1980s. After this initial period of high interest, however,

the number of quantitative empirical studies of software error rates published per year

diminished until the early 2000s. Thereafter, interest in the quantitative characterization of

empirical software error rates grew again. Among the reasons for this renewed interest was the

increasing codification and institutionalization of software engineering processes beginning in

the late 1990s (e.g., IEEE 2000, ISO-IEC 2008). The growing importance of security, concerns

about liability, and an increase in theoretical consideration of software engineering practice

among philosophers and other humanists may have also contributed to the revival.

Managing error in large, multi-person software projects is now a matter of considerable

concern and attention. Despite this concern, most contemporary software development projects

almost never involve statistical hypothesis testing based on quantitative error rates (DeMarco

1982, Humphrey 2008): typically quantitative error analysis in large software projects is limited

to tracking the number of errors, with relatively little attention regard to the nature of those

errors, as a function of time.5

In practice, of course, software engineering projects catch some errors during software

development by using model-checking, compilers, linkers, software development environments,

formal reviews, and testing. Inevitably, however, errors escape these checks and are detected, if

at all, only after the software has been deployed.

Roughly 100 empirical studies have been published since 1970 on software error rates.

Of those studies we chose eleven widely cited studies that involve quantitative data collection,

reasonably well-documented methods, a broad range of error types, and sample sizes of twenty

or more projects representing a variety of application types. While our sample is not exhaustive,

we regard it as representative. To help assess whether our sample is representative, we examined

every abstract in IEEE Transactions on Software Engineering that mentions software error. If

the abstract mentioned software error, we reviewed the associated full paper to assess whether it

contained information that should be included in a representative sample of empirical software

error-rate literature. We found, based on this method, that our sample was in fact

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
5 Large software projects typically use an error tracking system that records error-reports generated by developers
and testers and records actions taken (status-tracking) concerning those reports. Although such error tracking
systems could be used to inform formal statistical analyses of error-rates, they are typically not optimized to be used
this way.

representative.6 In addition to our survey of the literature, one of us (AU#1) conducted an error

analysis of the Linux operating system (excluding the kernel) using the splint static analyzer

(University of Virginia 2018).

 For each of these twelve studies, we recorded the general application type (the domain in

which the software is used, whether the software was an application or part of an operating

system, the general types of error recorded, the average fraction of lines sampled that contained

at least one error, and the standard deviation of the fraction of the errored lines. (We will explain

the taxonomy of error types below.) Our findings from the empirical literature, and from our

splint analysis of Linux, are summarized in Table 1.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
6	 This result is not especially surprising, because at least two of the sources contained in our sample (e.g., Boehm
1981 and Humphreys 2008) themselves contain broad summaries of published empirical software error rates. 	

Table 1. Some descriptive statistics of empirically observed software error rates obtained
at the completion of system test, for a range of software application types.

Application type Types of error Fraction of
sampled lines
errored, average

Fraction of
sampled lines
errored,
standard
deviation

References

Banking Misunderstanding
the specification,
logic, numerics

0.01 (10-year
total)

0.011 (10-year
total)

Banker et al.
2002, p. 34

Military towed
marine sensor
array
(SURTASS)

Misunderstanding
of specification,
logic, numerics

0.03 not available Thielen 1978

Various various 0.02 not available Charette 20057

Various

Misunderstanding
of specification,
logic, numerics

0.02 (average
across all app.
types)

not available Jones 2008, pp.
433-434

Various Java and
C++ applications

Misunderstanding
the specification,
logic, numerics

0.02 (average over
all app. types)

0.01 Phipps 1999

Various Misunderstanding
the specification,
logic, numerics

0.02 not available Thayer, Lipow,
and Nelson 1978

Various Misunderstanding
the specification,
logic, numerics

0.03 (average over
all app. types)

not available Boehm 1981, p.
383

Various Misunderstanding
the specification,
logic, numerics

0.03 (average over
all app. types)

not available Jones 1978

Various US-
produced
software

Misunderstanding
the specification,
logic, numerics

0.02 (average over
all app. types)

not available Jones 1981

Various Misunderstanding
the specification,
logic, numerics

0.02 (average over
all app. types)

not available Humphrey 2008,
p. 58

Operating system Logic, memory 0.005 not available Malkawi 20149

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
7 The error rates stated in Charette 2005 are an order-of-magnitude estimate.
8 Humphrey 2008 states this data in a high-level summary form only.

kernels management, task
management

Linux operating
system,
excluding the
kernel

Logic, incorrect
type conversion,

memory
management

0.02 0.01 Unpublished
splint results
obtained by
AU#1, 2018)

In our survey, we discovered that the taxonomies used in published empirical software error

studies typically varied, and on the surface appeared to be incommensurable, from study to

study. On further analysis, however, it became clear to us that the range of error types reported

in the empirical software error literature could, with only a slight abstraction,10 be represented in

just a few higher-level types of error. In our review we categorized these higher-level error types

as follows: misunderstanding of the specification, logic, numeric, and memory management.

This agrees with various taxonomies of empirical software error discussed in Bowen 1980 and

Boehm 1981 (p. 383), although it is not strictly identical to any one of them. In the following,

we illustrate what the categories in our taxonomy mean.

3.1 Misunderstanding the specification

By far, the kind of error most frequently reported in these studies was “Misunderstanding the

specification”. This error type presumes that the specification is clearly and unambiguously

formulated (at least for sufficiently informed, well-intentioned readers). In many software

system development projects, however, the software engineers assigned to implement to a part of

the specification may not be fluent in the domain the specification addresses, and often enough,

do not even know who the specification writers are. This can lead to all manner of

misunderstandings. An engineer could fail to understand the specification in at least two

different ways. For example, the engineer could fail to understand that a particular model or

theory (e.g., Newtonian mechanics) was presumed by the specification. Or, the engineer might

incorrectly allocate or map the requirements stipulated by the specification. For example,

suppose the engineer were given the requirement to compute the trajectory of a missile in real

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
9 Malkawi 2014 states that the owners of the data prohibit reporting the identity of the operating system(s) of
interest.
10	 Discovering an “appropriate” abstraction not a mechanical activity, and whether a given abstraction A is “better
than” another, B, depends on the purpose the abstraction must serve. 	

time. Suppose further that the engineer allocated this requirement to a machine that was too

slow to perform the computation. This would be an error in allocating requirements.

3.2 Errors in numerics

Many application types require a representation of real numbers (e.g., in the representations of

forces, distances, and temperatures). In general, modern digital computing systems can only

approximate the true value of real number quantities of interest. In some applications, the

difference between the digital approximation, and the true value of the quantity of interest, does

not matter and can be ignored. But it often does, and this a relatively common source of error.

More specifically, it is not uncommon to find errors in deployed software arising from the

following sources (the list is neither mutually exclusive nor jointly exhaustive; see University of

Virginia 2008 for a more comprehensive, and more fine-grained (C-language-oriented) list):

 a. The developer doesn’t understand, or provide protection against, the numerical

accuracy and precision limitations in a numerical algorithm.

 b. The developer is not aware of, or doesn’t pay attention to, the limitations of numerical

type conversions in the language. For example, a developer might try to replace the value of a

64-bit-precision variable with the value of a 128-bit-precision variable. The precision of the

result could be 64 bits, 128 bits, or ill-defined. In many software development environments,

this kind of error, even if it is undefined in the language of interest, is not reported by the

compiler.

 c. The developer is not aware of smallest positive value representable in the computing

environment (in computing jargon, often called the “platform epsilon”). Every computing

environment has a smallest positive value that is representable in that environment. Any attempt

to compute a value smaller than this may result in an undetected error, in some cases with

disastrous results.

3.3 Incorrect logic

Arguably, logic errors could arise in almost any aspect of any taxonomy of errors. Given that

programmers are not logically omniscient, we cannot expect to prevent logic errors in a system

with even moderate levels of complexity. Among the more common types of logic errors are:

 a. The developer does not understand the logical structure of what is being represented.

 b. In a mutually exclusive list of logical cases, the developer fails to manage one or more

cases.11

3.4 Memory management errors

All of today’s general-purpose computing systems contain physical memory (hardware in which

information is stored and from which it is retrieved) that must be managed. At some level, these

computing regimes require management of memory allocation (designating specific memory for

use by a program), referencing (locating a location in memory), writing to and reading from

memory, and deallocation (releasing previously allocated memory for use by other programs) in

order to satisfy speed (“time complexity” (Aho, Hopcroft, and Ullman 1983, Section 1.4)) or

space (“space complexity” (Aho, Hopcroft, and Ullman 1983, Chap. 12)) constraints. In some

languages or applications, this kind of detail is often managed automatically, by the operating

system, a run-time environment, or the compiler/linker. In such cases, the software engineer

does not have to explicitly manage memory. In some languages or environments, memory

management must be done by the application programmer.

4. Limitations and caveats

Most of the projects referenced in Table 1 were developed under best practicable engineering

standards. The error rates in Table 1 are typical of those found in software projects after the

software became operational. The rough taxonomy we have sketched above certainly does not

exhaust the varieties of errors and failures that software projects encounter. Empirical studies of

this kind will tend to miss many important ways that things can go wrong. For example, it has

been estimated that about 15% of software projects are terminated (“fail”) before, or shortly
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
11 There is straightforward programming technique that helps to mitigate the effects of this kind of error –
essentially, it requires including a logical case clause that handles anything that lies outside the cases explicitly
enumerated/diagnosed by the program. The technique isn’t a panacea, of course. A software engineer must use it
religiously, and something reasonable must be done by a program if the program finds itself in a non-enumerated
logical state.

after, completion of development because of errors in the specification – i.e., the specification

does not actually state what the procurer/user needs/wants (DeMarco 1982, 3; Stutzke 2005, 9).

No data from projects that “fail” in this sense are reflected in Table 1.

In addition, computing hardware is susceptible to failure. Some of these failures are

transient and are detected and automatically corrected by the computing environment. Many are

not. No computing hardware failures are considered in the empirical studies we evaluated, nor

are they discussed further in this paper. Hardware failure is an unavoidable reality for software

intensive systems insofar as software must be implemented in physical devices and these devices

are subject to the contingencies of the physical world.

 Furthermore, a software error has at least two dimensions: the type of the error,

considered independently of how the software system is used, and the consequences of the error

in the context in which the software system is used (see MISRA 2013; Rescher 2007, 4). An

error in one usage context might be of no consequence, but that same error might be fatal in

another usage context. The taxonomy in Table 1 does not sharply distinguish these two

dimensions.

 These limitations and caveats are not intended to be a criticism of the empirical work

conducted to date. Regardless of how one approaches a characterization of software error, it is

likely impossible to find a taxonomy that strictly partitions (i.e., provides a mutually exclusive,

jointly exhaustive decomposition of) software error space. A typographical error, for example,

could be associated with essentially any kind of error.

 Developers rarely publish metrics, including error metrics, on their projects (DeMarco

1982). There are many reasons for this. Not least, it takes time and money to analyze error

metrics, and almost no software procurement specifically pays a developer to attend to software

error metrics analysis.12 In addition, a published error metric discloses something about the

performance of the developer, and this can create the perception of a developer weakness or even

lead to legal liabilities.

5. Interpreting the results of empirical studies

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
12 In a competitive environment, of course, a developer that paid no attention to software error would go out of
business.

At least three significant observations can be made about the empirical studies of software error

to date. Most strikingly, there is good agreement among average empirical software error rates

reported from 1978 to 2018, regardless of application type – about one to two empirically

observable errors per hundred lines of code. In addition, these studies suggest that this error rate

has not appreciably changed in nearly 40 years of software engineering practice. Note also that

standard deviation of the empirical error rates, where reported, are large relative to the average

error rates. This suggests that the empirical software error-rate data has high dispersion. Third,

the splint error measurements (performed by AU#1) on Linux are especially worth noting.

Linux is used in, or used in the development of, roughly 10 billion devices worldwide. We

would expect a widely used operating system to have among the lowest empirical software error

rates. A splint analysis suggests that this assumption is false – Linux, exclusive of the kernel,

has an empirical error rate of 2% (on average, there are two errored C-language statements per

100 C-language statements, exclusive of the kernel, making the Linux error rate (exclusive of the

kernel) comparable to that of non-operating-system code. The consequences of these errors in

any given usage regimen, of course, is a separate question.

 Analysis of empirical studies of error rates show some striking features, as we have seen.

However, the error types shown in Table 1 may not shed sufficient light on how we might best

reduce error rates. It is likely that understanding the kinds of errors that arise, their prevalence,

seriousness, and ideally their sources, will allow us to make progress on reducing the prevalence

of the errors that we care about. To begin to address this challenge we need a taxonomy of errors

that is at least logically complete (within an appropriate universe of discourse). We consider

Giuseppe Primiero’s 2014 taxonomy of errors in information system as a productive start on

such a project.

6. An overview of Primiero’s taxonomy of errors in information systems

Primiero’s taxonomy of error in information systems depends heavily on a formalized

characterization of information systems. To render his account of error clear enough for the

purposes of this paper, we must first recount some of that formalism. Primiero’s approach

begins with the recognition that computing systems have both epistemic (informational/semantic

content) and computational (“mechanical operational”/”instructional”) features, and these are

related in various ways. An adequate account of error in computing systems must take both

these features and their relationship into account. To achieve this end, Primiero begins by

characterizing information systems in terms of an informational semantics that is cast in a

procedural idiom (analogous to the idiom of Abstract State Machines).13 The procedural idiom

includes two main operations on informational contents: access and use. In that idiom, local

validity (i.e., true in a given context) of informational content “is explained in terms of the

instructions needed to reach a given state; global validity is given by the set of states the system

goes through to reach a given goal” (Primiero 2014, 251). “Moving to reach a goal is explained

by accessing the information at a given starting state and using that information by performing

syntactic transformations on it, obtaining the next state.” (Primiero 2014, 251).

 The language of Primiero’s characterization of information systems has countably many

types. Terms are objects in types. A formula in that language is the expression that an object is

of a given type. Sets of formulas are also included in the language. Operations work on terms

to define non-atomic formulas. States correspond to models of the language where types are

declared valid (Primiero 2014, 251).

 More precisely, the alphabet of the language of the informational semantics of Primiero’s

2014 characterization of information systems is

 a. types := {A, B, C, …}

 b. processes := {a1, a2, a3, …}

 c. data stacks := {Γ1 , Γ2 , Γ2 , …}

 d. states := {S1 , S2, …}

 e. operations := {r1, r2, …, rn}

Types express propositions that are true by terms. A term can be defined by a program accessed

and executed at some state; in that case, its type corresponds to the specification declaring

validity of a content by that program. In this representation, a specification is based on a

functional interpretation of the system. More formally, Primiero defines (2014, 252):

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
13 Characterizing how the epistemic content of a computing system could be cast in a procedural idiom involves
some interesting, and likely difficult, questions, such as “Can we reduce ‘knowing’ to a procedural idiom?”.
Addressing those questions is beyond the scope of this paper.

 Let S be a set of states and S ∈ S. A specification α (= A-valid) is the content made

valid by accessing and using a program of type A at state S ∈ S.

 In a state (Γi , α) a process ai is executed, instantiating a specification α under a set of

other states. To every non-terminal state S in Γi, a finite set of rules applies to reach content

valid at S’. A model for the system evaluates every S by transition to some S’.

 Let Γi be a sequence of processes. A goal G is a state S = (Γi , α) for a system if α	

is the intended specification of the system, i.e., the processes in Γi are supposed to make the type

A in α valid (Primiero 2014, 252).

 A data stack Γi is a (possibly empty) sequence of processes or programs that is accessed

and executed from states S1 to Si to reach a specification α at state Si+1. (Primiero 2014, 252)

 φ is a strategy if φ is a collection of rules or instructions that, given an initial state, are

used by the system to reach a goal G by accessing and using the information valid at

intermediate states. (Primiero 2014, 252)
	

 A procedure is a triple P = <φ, S, G>, where φ is an operation, S is a set of states, and G

is a goal reached via φ. (Primiero 2014, 252).

 Given this characterization of an information system, Primiero 2014 defines a taxonomy

of errors whose highest-level types are mistakes, failures, and slips, as follows.

On Primiero’s account, “[m]istakes are errors involving the description and the design of

the problem to be solved, or the specification to be implemented. […] resulting from a faulty or

incorrect explanation and presentation of the object for which a validation procedure is

required.” (2014, 259). Mistakes have both conceptual and material subtypes.

 A conceptual mistake is a mistake in which a […] pair (P, G), where P is a procedure and

G is a goal, “contains or refers to an ill-defined “category”14 A. (Primiero 2014, 259). For

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
14 By “category” in this context, we take Primiero to mean “type”, in the sense of the reserved term “type” his
formal characterization of information systems. 	

example, consider a specification that requires as its subroutine an algorithm to compute

Newtonian velocity. To define the domain of such function in a way that accommodates

Einstein-relativistic behavior would represent a conceptual mistake.

 A material mistake involves “[…] the structural design of the strategy, where a pair (P,G)

is given that includes elements operations or processes that do not constitute a strategic (sub-)

goal to G. […] This means that at the design level (e.g., in the physical design of the software)

there is an error implementing the system requirements specification.” (Primiero 2014, 259) For

example, suppose the system specification required computing leap years (which must be

divisible by 4) but the implementation tried to compute leap years by testing to see whether the

years were divisible by 3.

 Primiero defines failures as “[…] errors explicitly referring to the rules used in the

evaluation and resolution of the problem (respectively, the validation of the specification) or

related to the resources these rules have to access.” (Primiero 2014, 260) As with mistakes,

Primiero explains how failures have both conceptual material subtypes. Conceptual failures

involve “[…] problems in the selection and formulation of rules or strategies.” (Primiero 2014,

260).

 Material failures involve ‘[…] problems related to the accessibility of the resources

required for the correct execution of a procedure for the problem or specification at hand.”

(Primiero 2014, 260) All memory management errors in the sense of Table 1, for example, are

material failures.

 The least clearly delineated type of error discussed by Primiero is what he calls slips.

According to Primiero, slips are “errors generated by the applications of rules that are

appropriate to the given goal, but that do not match some formal criteria.” (Primiero 2014, 261).

Slips have both conceptual and material subtypes.15 Conceptual slips are “practical errors related

to algorithm design, i.e. where the selection of range and domain, the order of rules applied and

subrecursion definitions are chosen for an efficient algorithm” (Primiero 2014, 262). For

example, we might try to apply a second-order-valid numerical integration routine that requires a

fourth-order-valid integrator.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
15 Primiero infelicitously defines slips as “material errors” (2014, 261) thus making the subcategories of conceptual
and material slips less clear than they should be. We simply strike “material” from the original definition of slip
here for the purposes of our exposition.

With these definitions in hand, we can now compare the empirical software error

taxonomy of error types (in Table 1) with Primerio’s taxonomy of errors in information systems

(refer to Table 2).

Table 2. Correspondence between empirical software error types shown in Table 1 and
elements of Primiero’s (2014) taxonomy of information system errors. S =
misunderstanding the specification, N = numerics, L = logic, M= memory management, as
defined in Table 1. ND = not well-differentiated in the empirical software error literature.

Primiero’s 2014

taxonomy

 Correspondence to the

taxonomy of errors in Table 1

Mistakes

 Conceptual S (ND)

 Material L (ND)

Failures

 Conceptual S

 Material N (ND), L(ND), M

Slips ND

 Conceptual ND

 Material ND

Two observations immediately follow from Table 2. First, it is clear enough that the error types

described in the literature on empirical software error rates (i.e, the error types shown in Table 1)

correspond in various ways to some of the error types in Primiero’s taxonomy (that

correspondence, however, is not one-to-one). Second, there are error types in Primiero’s

taxonomy for which there is no clear counterpart in the empirical software error types of Table 1.

That observation implies that the error types in the existing empirical studies that we reviewed

are, relative to Primiero’s taxonomy, less than complete and fail to capture some important

features of software error. In this context at least, philosophical analysis provides a more fine-

grained differentiation of error types and dimensions than we find in the existing empirical

software error literature. As we noted above, this difference is especially significant in the case

of errors in software systems whose consequences can vary by context of use.

7. Discussion

Primiero’s formal characterization of information systems can support a much more

general notion of information system error than the “mistake/failure/slip” taxonomy that he

provides. One could argue, more generally, that any aspect of any computing system that is

inconsistent with any feature of a given formal characterization of information systems could be

called an ‘error in an information system’. Even within Primiero’s taxonomy of errors, the

“mistake/failure/slip” types represent just one of several logically possible partitionings of the

space of error types (in the generalized sense of ‘error in an information system’ mentioned in

the previous sentence).16 How one carves up the space of the taxonomies of error that can be

defined in terms of a given characterization of an information system will depend on the interests

of the “partitioner”. Those interests may include, but are not limited to, the concerns of the

community of software engineerng practitioners.

Whether any particular taxonomy can be used as the basis for a taxonomy of errors that

helps to reduce software errors in practice can be decided experimentally. One can imagine a

classroom-scale experiment of the following sort that is designed to provide a pairwise

comparison of competing error taxonomies. In this experiment each student is assigned to one of

three types of teams.

Team Type 1 develops software to a specification, using only the empirical software error types

of a given taxonomy as part of its development processes.

Team Type 2 develops software to the same specification, using a competing taxonomy as part

of its development process.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
16 Primiero’s interest in partitioning information system error space into mistakes, failures, and slips appears to be
twofold. First, that particular partition corresponds in some natural ways with the way software engineering practice
talks about errors (Primiero 2014, 258). Second, Primiero’s classification corresponds reasonably well with at least
one classification of errors in science (Primiero 2014, 258).

Team Type 3 analyzes the error statistics of the software developed by Teams of Types 1 and 2.

For a sufficiently large sample of Teams of Types 1 and 2, conventional statistical hypothesis

testing can be used to compare the error-rates of Teams of Types 1 and 2.

8. Conclusions

The reliability of software is intimately related to, if not fully determined by, the distribution of

errors in software systems and the uses to which that software is put. Even in software that has

been tested as well as is practicable, various kinds of error in software occur at the empirically

observed average rate of about one error per hundred lines of code. Reducing the frequency of

software error is a major goal of software engineering practice. Empirical software error rate

studies provide limited insight into the nature of software error.

In this paper we compared the taxonomies of empirically observed software error rates

reported in the published literature with Primiero’s taxonomy of error in information systems.

This comparison shows that although philosophical research into the problem of error in

software has barely begun, the insights this kind of analysis of software error has provided

already exceed the insights provided by empirical studies of software error in several important

respects. These results show how this kind of analysis can help to clarify how engineering

practice can be improved, while at the same time grounding software error characterization in an

epistemically and logically transparent idiom.

Acknowledgements: We wish to thank…

References

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1983). Data Structures and Algorithms.

Addison-Wesley.

Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers: Principles, Techniques,

and Tools. 2nd edition. Addison Wesley.

Banker, R.D., Datar S. M., Kemerer C. F. & Zweig, D. (2002). Software errors and software

maintenance management. Information Technology and Management 3, 25-41.

Boehm, B. W. (1981). Software Engineering Economics. Prentice Hall.

Boehm, B. W. et al. (2000). Software Cost Estimation with COCOMO II. Prentice Hall.

Bowen, J. B. (1980). Standard error classification to support software reliability assessment.

Proceedings of the National Computer Conference. pp. 697-705.

Chang, C. C., and Keisler, H. J. (2012). Model Theory. Third Edition. Dover.

Charette, R. N. (2005). Why software fails. IEEE Spectrum

DeMarco, T. (1982). Controlling Software Projects. Yourdon Press.

Horner, J. K., & Symons, J. F. (2014). Reply to Primiero and Angius on software intensive

science. Philosophy and Technology 27, 491-494.

Humphrey, W. S. (2008). The software quality challenge. Cross Talk: The Journal of Defense

Systems Engineering.

Humphreys, P. (2004). Extending ourselves: Computational science, empiricism, and scientific

method. Oxford University Press.

IEEE. (2000). IEEE-STD-1471-2000. Recommended practice for architectural description of

software-intensive systems. http://standards.IEEE. org.

ISO/IEC. (2008). 12207:2008. Systems and software engineering — Software life cycle

processes.

Jones, T. C. (1978). Measuring programming quality and productivity. IBM Systems Journal

17, 39-63.

Jones, T. C. (1981). “Program Quality and Programmer Productivity: A Survey of the State of

the Art”. ASM Lectures.

Jones C. (2008). Applied Software Measurement: Global Analysis of Productivity and Quality.

3rd edition. McGraw-Hill.

Linux authors, TBD. (2018). Version TBD.

Malkawi M. (2014). Empirical data and analysis of defects in operating systems kernels.

Proceedings of the 24th IBIMA conference. Milan, Italy, 6-7 November 2014. Available online

at

https://www.researchgate.net/publication/281278326_Empirical_Data_and_Analysis_of_Defects

_in_Operating_Systems_Kernels. Accessed 8 June 2018.

Motor Industry Software Reliability Association (MISRA). (2013). Guidelines for the Use of

the C Language in Critical Systems. https://www.misra.org.uk/. Accessed 30 June 2018.

Phipps G. (1999). Comparing observed bug and productivity rates for Java and C++. Journal

of Software: Practice and Experience 29, 345-358.

Primiero G. (2014). A taxonomy of errors for information systems. Minds and Machines 24,

249-273.

Royce, W. W. (1970). Managing the development of large software systems: concepts and

techniques. Proceedings, WESCON, August 29170.

University of Virginia, Department of Computer Science (2018). Secure Programming Lint

(splint), v3.1.2. http://www.splint.org/. Accessed 2 July 2018.

Stutzke, R. D. (2005). Estimating Software-Intensive Systems: Projects, Products, and

Processes. Addison Wesley.

Symons, J. F., & Horner, J. K. (2014). Software intensive science. Philosophy and Technology.

Doi:10.1007/s13347-014-0163.

Thayer, T. A., Lipow, M., & Nelson, E.C. (1978). Software Reliability: A Study of Large

Project Reality. North-Holland.

Thielen, B.J. (1978). SURTASS code Review Statistics. Hughes-Fullerton IDC 78/1720.1004.

Wikipedia. (2014). The Linux kernel. http://en.wikipedia.org/wiki/Linux_kernel. Accessed 19

September 2018..wikipedia.org/wiki/Linux_kernel.

	

